首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   11篇
  国内免费   6篇
测绘学   2篇
大气科学   35篇
地球物理   58篇
地质学   113篇
海洋学   17篇
天文学   7篇
自然地理   25篇
  2023年   1篇
  2021年   5篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   3篇
  2016年   14篇
  2015年   6篇
  2014年   10篇
  2013年   15篇
  2012年   15篇
  2011年   16篇
  2010年   13篇
  2009年   15篇
  2008年   4篇
  2007年   8篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   7篇
  2001年   6篇
  2000年   10篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   5篇
  1982年   4篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
131.
The Songpan-Garze fold belt, located in the eastern part of the Tibetan Plateau, covers a huge triangular area bounded by the Yangtze (South China), the North China and the Tibetan Plateau blocks. In the northeastern part of the Songpan-Garze fold belt, the Yanggon and Maoergai granitoids provide insights into regional tectono-magmatic events, basement nature and tectonic evolution. U–Pb zircon SHRIMP dating shows that the Yanggon and Maoergai granitoids have magmatic crystallization ages of 221 ± 3.8 Ma and 216 ± 5.7 Ma, respectively. Both the granitoids display adakitic geochemical signatures, suggesting that their magma was derived from partial melting of thickened lower crust. Pb–Sr–Nd isotopic compositions for granitoids reveal that there is an unexposed Proterozoic basement in the Songpan-Garze belt, which has an affinity with the Yangtze block. During development of the Paleo-Tethys ocean, the basement of the Songpan-Garze belt would be a peninsula approaching the Paleo-Tethys ocean from the Yangtze block.  相似文献   
132.
Fire scars have the ability to radically alter the surface energy budget within a tropical savanna by reducing surface albedo, increasing available energy for partitioning into sensible and latent heat fluxes and increasing substrate heat flux. These changes have the potential to alter boundary-layer conditions and ultimately feedback to local and regional climate. We measured radiative and energy fluxes over burnt and unburnt tropical savanna near Howard Springs, Darwin, Australia. At the burnt site a low to moderate intensity fire, ranging between 1,000 and 3,500 kW m−1, initially affected the land surface by removing all understorey vegetation, charring and blackening the ground surface, scorching the overstorey canopy and reducing the albedo. A reduction in latent heat fluxes to almost zero was seen immediately after the fire when the canopy was scorched. This was then followed by an increase in the sensible heat flux and a large increase in the ground heat flux over the burnt surface. Tethered balloon measurements showed that, despite the presence of pre-monsoonal rain events occurring during the measurement period, the lower boundary layer over the burnt site was up to 2°C warmer than that over the unburnt site. This increase in boundary-layer heating when applied to fire scars at the landscape scale can have the ability to form or alter local mesoscale circulations and ultimately create a feedback to regional heating and precipitation patterns that may affect larger-scale processes such as the Australian monsoon.  相似文献   
133.
Integrated textural and chemical characterisation of zircon is used to refine the U–Pb geochronology of the Archaean, ultra-high temperature Napier Complex, east Antarctica. Scanning electron microscope characterisation of zircon and the rare earth element compositions of zircon, garnet and orthopyroxene are integrated to place zircon growth in an assemblage context, thereby providing tighter constraints on the timing of magmatic and metamorphic events. Data indicate that magmatism occurred in the central and northern Napier Complex at ca. 2,990 Ma. A regional, relatively low-pressure metamorphic event occurred at ca. 2,850–2,840 Ma. Mineral REE data from garnet-bearing orthogneiss indicate that ca. 2,490–2,485 Ma U–Pb zircon ages provide an absolute minimum age for the ultrahigh temperature (UHT) foliation preserved in this rock. Internal zircon zoning relationships and estimated zircon-garnet DREE values from paragneiss suggest that an absolute minimum age of ultra-high temperature metamorphism is ca. 2,510 Ma, but that it is more likely to be older than ca. 2,545 Ma. We suggest that the high proportion of published zircon U–Pb data with ages between ca. 2,490–2,450 Ma reflects late, post-peak zircon growth and does not date the timing of peak UHT metamorphism.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
134.
Speculations on the Thermal and Tectonic History of the Earth   总被引:3,自引:0,他引:3  
Summary. The connection between the Earth's thermal history and convection in the mantle is exploited to elucidate the early evolution of the Earth. It appears probable that convection extending over almost all of the mantle has dominated vertical heat transport throughout the whole of the Earth's history. Only in boundary layers at the surface and at a depth of 650–700 km is conduction likely to be important. The resulting evolution appears to be consistent with geological observations on early Precambrian rocks.
Various arguments are put forward in favour of two horizontal scales of convective flow in the mantle at depths less than 650 km. The large scale flow is related to the motion of major plates, and must be ordered over distances of more than 5000 km. Its evolution and energetics are discussed and there are no obvious problems in maintaining the proposed convective motions. Small scale flow with an extent of the order of 500 km appears necessary both to explain the heat flow through older parts of the Earth's surface and to reconcile the geophysical observations with the results of numerical experiments. Though the existence of the small scale flow is at present speculative, various tests of its presence are proposed.  相似文献   
135.
136.
137.
138.
The new simple design equations for predicting the ultimate compressive strength of stiffened plates with initial imperfections in the form of welding-induced residual stresses and geometric deflections were developed in this study. A non-linear finite element method was used to investigate on 60 ANSYS elastic–plastic buckling analyses of a wide range of typical ship panel geometries. Reduction factors of the ultimate strength are produced from the results of 60 ANSYS inelastic finite element analyses. The proposed design equations have been developed based on these reduction factors. For the real ship structural stiffened plates, the most general loading case is a combination of longitudinal stress, transverse stress, shear stress and lateral pressure. The new simplified analytical method was generalized to deal with such combined load cases. The accuracy of the proposed equations was validated by the experimental results. Comparisons show that the adopted method has sufficient accuracy for practical applications in ship design.  相似文献   
139.
Granular mass flows (e.g., debris flows/avalanches) in landslide-prone areas are of great concern because they often cause catastrophic disasters as a result of their long run-out distances and large impact forces. To investigate the factors influencing granular mass flow mobility, experimental tests were conducted in a flume model. Granular materials consisting of homogeneous sand and non-homogeneous sandy soil were used for studying particle size effects. Run-out tests with variable flow masses, water contents, and sloping channel confinement parameters were conducted as well. The results indicated that granular mass flow mobility was significantly influenced by the initial water content; a critical water content corresponding to the smallest flow mobility exists for different granular materials. An increase in the total flow mass generally induced a reduction in the travel angle (an increase in flow mobility). Consistent with field observations, the travel angles for different granular materials decreased roughly in proportion to the logarithm of mass. The flume model tests illustrate that the measured travel angles increase as the proportion of fine particles increases. Interestingly, natural terrain possesses critical confinement characteristics for different granular mass flows.  相似文献   
140.
The third member of Shahejie Formation(Sha-3 member; 42–38Ma of Eocene) in the Bozhong Depression,offshore Bohai Bay Basin was subject to multiple post-depositional modifications. The present structural framework of the Bozhong Depression,which is characterized by sags alternating with uplifts,does not reflect its original sedimentary pattern. Previous studies have not discussed the post-depositional modification of this succession,including the sedimentary pattern variations and the depositional geodynamic setting. This work determined the characteristics of the post-depositional modification and original sedimentary pattern of the Bozhong Depression through analysis of seismic data,well-log data and fission-track ages. The results demonstrate that the Shijiutuo rise,a major structural feature of the current basin,did not exist during the major depositional stage of the Sha-3 member,when the Qinnan sag was largely connected to the Bozhong sag to form a single contiguous deposition area within the basin. By contrast,the Shaleitian and Chengbei rises,located in the western part of the Bozhong Depression,have existed before the depositional period of the Eocene Sha-3 member; these features were manifested as syn-depositional tilted fault blocks,the uplifted footwall blocks of which provided sediments for the neighboring Shanan and Chengbei sags. The western part of the Bonan low rise,located in the southern part of the Bozhong Depression,did not experience uplifting during the depositional phase of the Eocene Sha-3 member. The Huanghekou sag was connected with the Bozhong sag in the western part of the Bozhong Depression. The original sedimentary boundary of the southern Miaoxi sag possibly extended eastward about 10 km and connected with the Bozhong sag at its northern part. The present-day Bodong low rise,which is bounded by the Tan–Lu fault zone,also formed after the depositional period of Eocene Sha-3 member. It is thus concluded that the Bozhong Depression formed a connected large-scale sub-basin during the depositional stage of the Eocene Sha-3 member. Several neighboring sags that are now separated by rises,including the Qinnan,Shanan,Chengbei,Huanghekou,Miaoxi and Bodong sags,formed a single contiguous depositional area during the Eocene. The significant differences between the present and original basin patter and framework provide valuable information for better understanding the history of basin inversion and its impact on related hydrocarbon-system evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号