首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
  国内免费   1篇
大气科学   5篇
地球物理   6篇
地质学   36篇
海洋学   7篇
天文学   1篇
自然地理   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   1篇
  2013年   4篇
  2012年   1篇
  2010年   1篇
  2009年   6篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1979年   3篇
排序方式: 共有58条查询结果,搜索用时 187 毫秒
21.
The first SHRIMP zircon U e Pb ages from coal beds close to the end-Permian mass extinction are reported from the C_1 coal seam in the Yantang Mine in Laibin Town, Xuanwei County, eastern Yunnan Province.Zircons were extracted from kaolinite claystone layers, defined as tonsteins(volcanic ash deposits), in the subseam B_1 and B_3 of the coal seam C_1.The U-Pb ages are 252.0 ± 2.3 Ma and 250.3 ± 2.1 Ma for the sub-seam B_1 and B_3, respectively. Within analytical uncertainties, these U-Pb ages include the time period of the onset of the mass extinction at 251.941 ± 0.037 Ma, which was obtained from the marine Meishan section in Zhejiang Province, ~1600 km away from the Yantang Mine. These new ages represent not only the first and closest ages to the PTB mass extinction in terrestrial coal beds, but also ages from the nearest site to the Emeishan volcanoes investigated so far. Therefore these new data provide the most accurate stratigraphic horizon of terrestrial facies of the end-Permian extinction in South China. The Emeishan volcanoes were likely the source of volcanic ash in the coal seams at the Xuanwei County and broader areas in South China. Furthermore, the minerals and geochemistry characteristics of the C_1 coal seam also implied the influences of contemporaneous volcanic activities.  相似文献   
22.
Consideration of the existence of hydrosilicate liquids (HSL) in nature can help in understanding the accumulation and transport of some mineral- and ore-forming components at the transition from magmas to hydrothermal fluids. We studied the experimental formation of HSL using a base system Na2O-SiO2-H2O with addition of NaF, NaCl and metallic Ta. The interaction between quartz and aqueous solution, performed at 1.5 kbar and 600°C and followed either by cooling or by quench, showed that the formation of HSL occurred when initial Na2O exceeded 2 wt %. Neither NaF nor NaCl have a significant effect on the formation of HSL. The HSL concentrates F, whereas Cl partitions into the aqueous fluid. With addition of Ta to the system, the HSL becomes metal-enriched. Natural analogs of experimental HSL can be found among ??melt/fluid?? inclusions entrapped in quartz and other minerals of miaroles in granite pegmatites and raremetal granites. The HSL is a novel medium enabling extreme concentrations of lithophile ore metals at the magmatic-hydrothermal transition.  相似文献   
23.
Tellurium-bearing minerals are generally rare in chimney material from mafic and bimodal felsic volcanic hosted massive sulfide (VMS) deposits, but are abundant in chimneys of the Urals VMS deposits located within Silurian and Devonian bimodal mafic sequences. High physicochemical gradients during chimney growth result in a wide range of telluride and sulfoarsenide assemblages including a variety of Cu-Ag-Te-S and Ag-Pb-Bi-Te solid solution series and tellurium sulfosalts. A change in chimney types from Fe-Cu to Cu-Zn-Fe to Zn-Cu is accompanied by gradual replacement of abundant Fe-, Co, Bi-, and Pb- tellurides by Hg, Ag, Au-Ag telluride and galena-fahlore with native gold assemblages. Decreasing amounts of pyrite, both colloform and pseudomorphic after pyrrhotite, isocubanite ISS and chalcopyrite in the chimneys is coupled with increasing amounts of sphalerite, quatz, barite or talc contents. This trend represents a transition from low- to high sulphidation conditions, and it is observed across a range of the Urals deposits from bimodal mafic- to bimodal felsic-hosted types: Yaman-Kasy → Molodezhnoye → Uzelga → Valentorskoye → Oktyabrskoye → Alexandrinskoye → Tash-Tau → Jusa.  相似文献   
24.
The ore-formational, ore-facies, lithological, and mineralogical-geochemical criteria are defined for the detection of hydrothermal ecosystem fauna in ores of the volcanic-hosted massive sulfide deposits in the Urals. Abundant mineralized microfauna is found mainly in massive sulfide mounds formed in the jasperous basalt (Buribai, Priorsk, Yubileinoe, Sultanov), rhyolite—basalt (Yaman-Kasy, Blyava, Komosomol’sk, Sibai, Molodezhnoe, Valentorsk), and the less common serpentinite (Dergamysh) formations of the Urals (O—D2). In the ore-formational series of the massive sulfide deposits, probability of the detection of mineralized fauna correlates inversely with the relative abundance of felsic volcanic rocks underlying the ores. This series is also marked by a gradual disappearance of colloform pyrite, marcasite, isocubanite, pyrrhotite, and pyrite pseudomorphoses after pyrrhotite; increase of the amount of bornite, fahlores, and barite; decrease of contents of Se, Te, Co, and Sn in chalcopyrite and sphalerite; and inсrease of Tl, As, Sb, and Pb in the colloform pyrite. Probability of the detection of mineralized fauna in the morphogenetic series of massive sulfide deposits decreases from the weakly degraded sulfide mounds to the clastic stratiform deposits. The degradation degree of sulfide mounds and fauna preservation correlates with the attenuation of volcanic intensity, which is reflected in the abundance of sedimentary and volcanosedimentary rocks and the depletion of effusive rocks in the geological sections.  相似文献   
25.
As a result of LA ICP MS analysis of sulfides of the Semenov-2 hydrothermal field, it is established that covellite, which replaces Zn sulfides, is enriched in most trace elements. The Ga, Ni, and In contents in it do not vary, whereas Mn, Co, and Cd are lower than in sphalerite. The distribution of trace elements in covellite, which replaces Cu–Fe sulfides, is distinct: it is enriched in Cd, Sb, Pb, and Bi, whereas the contents of other elements are either lower or invariant. Covellite, which replaces Zn sulfides, is enriched in all trace elements relative to that replacing Cu–Fe sulfides. Enrichment of covellite in trace elements relative to primary sulfides was favored by oxidation of the hydrothermal fluid by seawater, which is similar to the processes of submarine oxidation of ancient massive sulfide deposits. Covellite is also a host to invisible gold and silver in ores of the Semenov-2 field along with toxic elements such as As, Se, Te, Tl, and Cd.  相似文献   
26.
The Jurassic is an important period of global coal formation, including the development of several large coalfields in central Asia and northern China. Individual seams within these peatlands represent sustained periods of terrestrial carbon accumulation and a key environmental indicator attributed to this record is the rate of carbon accumulation. Determining the rate of carbon accumulation requires a measure of time contained within the coal and this study aimed at determining the rate via the identification of Milankovitch orbital cycles using spectral analysis. Spectral analyses of geophysical data from two thick coal seams, No. 43(35.9 m) and No. 3(13.2 m), of the Middle Jurassic of the southern Junggar coalfield were conducted to identify significant signals of variations in ash content. The results showed that the variations in ash content of the coal showed spatial cycles at 0.2, 0.7 and 1.1 m~(-1), which were interpreted to represent 123 ka(eccentricity), 37.1 ka(obliquity), and 21.2 ka(precession) orbital periodicities, respectively. Using this timeframe, the depositional time of the No. 43 and No. 3 coal seams were calculated to be 876–970 and 322–357 ka, respectively. In combination with an understanding of carbon loss during coalification, the carbon accumulation rates of these Middle Jurassic peatlands were calculated to be 58.6–64.9 and60.3–66.8 g C m~(-2) a~(-1) for the No. 43 and No. 3 coal seams, respectively. Given that the net primary productivity(NPP) was 4.3 times the value of the carbon accumulation in a mid-latitude region of 40°–45°N, an NPP of 251.8–279.1 and259.1–287.1 g C m~(-2) a~(-1) was calculated for the No. 43 and No. 3 coal seams, respectively. In the context of the same paleolatitude(40°–45°N) and peat type, the NPP values of the Middle Jurassic strata in the study area were higher than those of the peatlands of the Holocene and Permian, and were similar to the NPP values of Early Cretaceous peatlands. Considering the NPP of a peatland is predominantly controlled by atmospheric CO_2 and O_2 levels and temperature, the lower content of CO_2 and an excessive O_2 level in the temporal atmosphere would lead to a decrease in peatland NPP. Therefore, it is inferred that the CO_2 level during the Middle Jurassic was higher than that of the icehouse Permian and Holocene periods, and it was similar to the CO_2 level of the greenhouse Cretaceous period. The results are consistent with the global CO_2 variation curve of Berner. In conclusion, Milankovitch orbital cycles calculated from geophysical logs can be used to infer the NPP of temporal peatlands during different geological periods, based on which the deep-time paleoclimates can be analyzed.  相似文献   
27.
Stratiform sediment hosted Zn–Pb–Ag deposits, often referred to as SEDEX deposits, represent an economically important class of ore, that have received relatively little attention in terms of defining lithochemical halos and geochemical vectors useful to exploration. This study concentrates on the Lady Loretta deposit which is a typical example of the class of Proterozoic SEDEX deposits in northern Australia. We examined the major and trace element chemistry of carbonate-bearing sediments surrounding the deposit and defined a series of halos which extend for several hundred metres across strike and up to 1.5 km along strike. The stratiform ore lens is surrounded by an inner sideritic halo [Carr, G.R., 1984. Primary geochemical and mineralogical dispersion in the vicinity of the Lady Loretta Zn–Pb–Ag deposit, North Queensland. J. Geochem. Expl. 22, 217–238], followed by an outer ankerite/ferroan dolomite halo which merges with low iron dolomitic sediments representative of the regional background compositions. Carbonate within the inner siderite halo varies in composition from siderite to pistomesite (Fe0.6Mg0.4CO3), whereas carbonate in the outer ankerite halo varies from ferroan dolomite to ankerite (Ca0.5Mg0.3Fe0.2CO3). Element dispersion around the stratiform ore lens is variable with Pb, Cu, Ba and Sr showing very little dispersion (<50 m across strike), Zn and Fe showing moderate dispersion (<100 m) and Mn and Tl showing broad dispersion (<200 m). Within the siderite halo Cu, Mg and Na show marked depletion compared to the surrounding sediments. The magnitude of element dispersion and change in carbonate chemistry around the Lady Loretta orebody has enabled the development of three geochemical vectors applicable to exploration. Whole rock analyses are used to calculate the three vector quantities as follows: (1) SEDEX metal index = Zn + 100Pb + 100Tl; (2) SEDEX alteration index = (FeO + 10MnO)100/(FeO + 10MnO + MgO); (3) manganese content of dolomite: MnOd = (MnO × 30.41)/CaO. All three vectors increase to ore both across strike and along strike. The manganese content of dolomite (MnOd) exhibits the most systematic pattern increasing from background values of about 0.2 wt% to a maximum of around 0.6 wt% at the boundary between the ankerite and siderite halos. Siderite within the inner halo contains considerably more Mn with MnO values of 0.4 to 4.0 wt%. It is suggested here that the basket of indices defined at Lady Loretta (Zn, Tl, metal index, alteration index, MnOd and MnOs) is applicable in the exploration for stratiform Zn–Pb–Ag deposits in dolomite-rich sedimentary basins generally. The indices defined can firstly assist in the identification of sedimentary units favourable for SEDEX mineralisation, and secondly provide vectors along these units to ore. The alteration index and MnOd, however, should only be used for exploration dolomitic sequences; they are not recommended for exploration in clastic sequences devoid of carbonates.  相似文献   
28.
Four major high grade polymetallic massive sulphide deposits (Rosebery, Hercules, Que River and Hellyer) occur within the Cambrian Mount Read Volcanic arc in western Tasmania. The Central Volcanic Complex which is host to the ores is a high-K calc-alkaline andesite-dacite-rhyolite suite which has erupted through thick continental crust along an ancient continental margin. The presence of longitudinal faults which control both the locations of mineralization and younger grabben fill volcanic sequences indicate late stage rifting during the development of the arc.The youngest and least deformed deposits at Hellyer and Que River contain primary textural features within the sulphide mound such as colloform pyrite and chalcopyrite diseased and zoned sphalerits. Isoclinal folding of the Que River ores has caused partial sulphide recrystallization and a cleavage induced lamination which is easily confused with the primary sulphide lamination. The older Rosebery deposit has a sheet like form and a poorly developed alteration pipe. The massive sulphide sheet has been strongly deformed by folding and thrusting leading to a series of imbricate ore lenses. All primary sulphide textures at Rosebery have been destroyed by the later deformation and annealing events.The classic metal zonation within these deposits of Fe->Cu->Pb-Zn->Ag-Au->Ba enables a reconstruction of the original form of the sulphide mounds and the location of primary hydrothermal seafloor outlets. The mean gold grade of the polymetallic massive sulphides varies from 2–4 ppm with the best grades concentrated toward the stratigraphic hanging wall of the deposits associated with either the high grade zinc zone or the barite zone. Mt. Lyell, which is a large copper stock-work orebody in the southern part of the volcanic arc, shows a distinctly different association of gold with copper in the deepest part of the stock-work system. This bipartite association of Au-Zn in the hanging wall (e. g. Hellyer, Que River and Rosebery Zn-Ba zone) and Au-Cu in the footwall (e. g. Mt. Lyell and Rosebery Cu zone) has been observed in other seafloor massive sulphide ores world wide, and is considered to relate directly to the gold transporting mechanism.The footwall gold-copper association is the result of deposition of gold from the high temperature soluble gold-chloride complex due to decreasing temperature and increasing pH as the fluids move up towards the seafloor. On the other hand, concentration of gold in the upper lead-zinc-barium rich parts of massive sulphide lenses at Hellyer, Que River and Rosebery results from remobilization and transport of gold as the bisulphide complex, as the hydrothermal fluids move up through the previously deposited sulphide mound or blanket and out onto the seafloor continually mixing with sea water and becoming more oxidized. Gold is ultimately concentrated at the upper-most surface of the massive sulphide lens due to the continuation of this zone refining process throughout the evolution of the orebody.
Zusammenfassung In dem kambrischen Vulkanbogen des Mount Read, Westtasmanien, gibt es vier hochwertige polymetallische, massive Sulfidlagerstätten: Rosebery, Hercules, Que River und Hellyer. Alle Lagerstätten liegen innerhalb des zentralen Vulkanit-komplexes, eines K-reichen, kalk-alkalischen Andesit-Dacit-Rhyolithes, der entlang eines alten Kontinentalrandes durch eine mächtige kontinentale Kruste eruptierte. Späte Riftphasen während der Bildung des Vulkanbogens werden durch längsgerichtete Störungen, die sowohl Ausfällungsorte als auch jüngere Grabenfüllungen steuern, angedeutet.Hellyer und Que River, die jüngsten und am schwächsten deformierten Vorkommen, enthalten innerhalb der Sulfide primäre texturelle Merkmale, wie kolloidalen Pyrit und Kupferkies, sowie zonierten Sphalerit. Isoklinale Faltung der Que River Lagerstätten verursachte eine teilweise Rekristallisation der Sulfide und eine schieferungsbedingte Lamination, die schwer von der primären Sulfidlamination zu unterscheiden ist. Die ältere Rosebery Lagerstätte hat eine plattenartige Form und einen schwach entwickelten Schlot. Die massive Sulfidplatte wurde durch Faltung und Überschiebung intensiv deformiert, so daß es zu einer dachziegelartigen Lagerung des Lagerstättenkörpers kam. Sämtliche primären Strukturen wurden so durch die spätere Deformation zerstört.Die klassische Zonierung der Metalle innerhalb der Lagerstätte, nämlich Fe->Cu->Pb-Zn>Ag-Au->Ba ermöglicht die Rekonstruktion der ursprünglichen Form und Lage der Sulfide am primären Ausfällungsort. Der durchschnittliche Goldgehalt der Sulfide liegt zwischen 2 und 4 ppm, mit Maxima innerhalb des Hangenden von hochwertigen Zinkoder Baritvorkommen.Mt. Lyell, eine große Kupferlagerstätte im Süden des Vulkanbogens, zeigt eine unterschiedliche Kupfer-Gold-Vergesellschaftung im tiefsten Teil der Lagerstätte. Dieses zweigeteilte Vorkommen, einmal von Gold und Zink in oberen Bereichen (z. B. Hellyer, Que River und der Rosebery Zn-Ba-Zone) und zum anderen von Gold und Kupfer in tieferen Stockwerken (z. B. Mt. Lyell und die Rosebery Cu-Zone) wurde weltweit bei mehreren Sulfidlagerstätten beobachtet. Dieses Phänomen wird direkt auf die Art des Transportme-chanismusses des Goldes zurückgeführt. Die Gold-Kupfervorkommen im tieferen Stockwerk resultieren aus einer Fällung von Hochtemperatur-Gold-Chlorid-Komplexen durch Abkühlung und steigenden pH-Wert während des Aufstiegs der Lösungen. Die Anreicherung von Gold in den höher gelegenen Blei-Zink-Barium-reichen Teilen bei Hellyer, Que River und Rosebery resultiert aus einer Remobilisation und einem Transport von Gold als Bisulfid-komplex, als Folge des Aufstiegs hydrothermaler Lösungen durch ältere Sulfide. Dabei werden die Lösungen auf dem Weg zum Ozeanboden kontinuierlich mit Meerwasser vermischt und bekommen einen mehr oxidierenden Charakter.Die Goldanreicherung direkt an der Oberfläche des massiven Sulfidkörpers ist die direkte Folge dieses fortlaufenden Prozesses während der Entwicklung der Lagerstätte.

Résumé Dans l'arc volcanique combrien du Mont Read (Tasmanie occidentale), existent quatre dépôts de sulfures polymétalliques massifs à haute teneur: Rosebery, Hercules, Que River et Hellyer. Tous ces dépôts sont contenus dans le Complexe Volcanique Central, lequel consiste en une série andésitodacito-rhyolitique calco-alcaline riche en K, qui a fait éruption à travers une croûte continentale épaisse, le long d'une ancienne marge continentale. La présence de failles longitudinales, qui déterminent à la fois l'emplacement des minerais et l'existence de séries volcaniques jeunes de comblement de graben, témoigne de processus de rifting tardifs au cours de l'histoire de l'arc.Les dépôts de Hellyer et de Que River, qui sont les plus jeunes et les moins déformés, présentent dans les sulfures des structures primaires telles que: pyrite et chalcopyrite colloformes et blende zonaire. Le minerai de Que River a subi un plissement isoclinal, responsable d'une recristallisation partielle des sulfures et d'une foliation de schistosité, difficile à distinguer de la lamination originelle des sulfures. Le dépôt de Rosebery, plus ancien, présente la forme d'un feuillet avec une cheminée d'altération peu développée. Ce feuillet de sulfure massif a été fortement déformé par le plissement et par des failles de chevauchement qui ont engendré une série de lentilles de minerai imbriquées. Ces déformations ont provoqué la destruction de toutes les structures primaires des sulfures à Rosebery.La distribution zonée classique des métaux dans ces dépôts (FeCaPbZnAgAuBa) permet de reconstituer la forme originelle des ames de sulfures et de localiser les points d'émissions primaires sur le fond marin. La teneur moyenne en or dans les sulfures massifs polymétalliques varie de 2 à 4 ppm, les teneurs les plus élevées se concentrant vers le toit stratigraphique des sédiments associés, dans les zones à zinc ou à barite. Le Mont Lyell, formé d'un grand gisement de cuivre dans la partie sud de l'arc volcanique, présente une situation nettement différente: l'or y est associé au cuivre dans la partie inférieure du gisement. Une telle dualité d'association Au-Zn au toit (p.ex. Hollyer, Que River et Zone à Zn-Ba de Rosebery) et Au-Cu au mur (p.ex. Mt Lyell et zone à Cu de Rosebery) a été observée dans des amas de sulfures massifs en d'autres endroits du monde et est considérée comme résultant directement du mécanisme de transport de l'or.L'association Au-Cu au mur résulte du dépôt de l'or à partir de complexes solubles de chlorure d'or de haute température, dépôt provoqué par la baisse de température et l'augmentation du ph lorsque les fluides montent vers le fond marin. D'autre part, la concentration de l'or dans les parties supérieures à Pb-Zn-Ba des gisements de Hellyer, Que River et Rosebery résulte d'une remobilisation de l'or sous forme de complexes bisulfurés, lorsque les fluides hydrothermaux montent à travers les sulfures déjà déposés et arrivent sur le fond marin où ils s'oxydent et se mèlent continuellement à l'eau de mer. L'or est finalement concentré à la surface supérieure des lentilles de sulfure massif, grâce à la poursuite de ce processus au cours de l'évolution du gisement.

Mount Read, , 4 , : Rosebery, Hercules, Que River Hellyer. , - -- , . , , , . Hellyer Que River, , , .: . Que River , . Rosebery . , . . , F- > - > Pb- > Zn- > Ag> . 2 4 m, . Mt. Lyell , . : (.: Zn-Ba Hellyer, Que River Rosebery) (.: Mr. Lyell Rosebery). . pH . , , , , . . .
  相似文献   
29.
Climate Dynamics - A shallow mixed layer depth bias in Austral winter in the Subantarctic Zone is a common feature of Coupled Model Intercomparison Project (CMIP5) models, including the Community...  相似文献   
30.
Numerical computer simulations have been used to gain insight into the evolution of marine hydrothermal systems and the formation conditions of massive sulfide deposits in ancient and modern submarine volcanic terrains. Simulation results have been used to gain a better understanding of the formation of massive sulfide ore deposits, their location, zonation, size, and occurrence in various geotectonic settings.Most hydrothermal fluid discharging at the seafloor exhibits temperatures ranging from 200 °C to about 410 °C and average fluid discharge velocities of 1 to 2 m/s in agreement with seafloor observations. Mass calculations imply that average massive sulfide deposits may form in ~ 5000 years while giant deposits take longer than 5000 years to accumulate; supergiant deposits either need much longer time to form (> 35,000 years) or at least 100 ppm of metal in solution. Results indicate that supergiant deposits may only form in certain geotectonic environments where longevity and preservation potential of the hydrothermal system are high. An additional process (mineral precipitate cap) is proposed here to explain the zinc content of massive sulfide deposits. This cap would prevent the widespread dissolution of anhydrite and the ‘wash-out’ of zinc by subsequent hydrothermal fluid discharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号