首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   5篇
  国内免费   1篇
测绘学   1篇
地球物理   3篇
地质学   28篇
海洋学   1篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1996年   1篇
  1994年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有33条查询结果,搜索用时 218 毫秒
11.
Gem corundum, a minor but persistent megacryst in east Australian basalt fields, is mined from some placer concentrations. Laser ablation, inductively coupled plasma mass spectrometry analyses and O isotope determinations on a colour range of corundum from different fields, show that chromophore (Fe, Cr, Ti, V) and genetic indicator (Ga, Mg, δ18O) values can distinguish corundum sources (magmatic, metamorphic and metasomatic) before basalt incorporation. They also characterise corundum groups from different fields. This identified two metamorphic groups, one carrying ruby at Barrington Tops, and a magmatic group distinct from those from other gem fields (lower Fe, northeast Tasmania; higher Fe, Yarrowitch). Ruby-bearing groups show clear provincial characteristics and include lower temperature spinel-facies groups (Barrington, Yarrowitch) and higher temperature garnet-facies groups (Cudgegong–Macquarie River). High Mg/Fe and Ni values in the latter approach those for corundum in diamond, and are a possible diamond indicator. The corundum derived from diverse fold-belt and felsic sources in underlying lithosphere forms a dataset for comparing corundum from other basalt fields.  相似文献   
12.
Subordinate sapphire accompanies prevalent zircon megacrysts in the Bo Loei basaltic gem field, Ratanakiri Province, Cambodia. These deposits are important for heat-treated gem zircon. Dark blue sapphire, with rare blue-green, orange-brown and yellow stones, up to a few cm in size, include hexagonal-shaped and growth-zoned crystals. Analyses of the sapphires (electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry) showed Fe as the main chromophore (0.6–2.7 wt%), with minor Ti (<0.7 wt%). Sapphire cores show enrichment in Fe relative to rims and some include exotic heavy elements (Nb up to 56, Ta up to 144, Sn up to 5 ppm). The sapphires show high Ga values (271–724 ppm) and Ga/Mg ratios (4.8–77.0) suggesting magmatic associations. Two sapphires with syngenetic inclusions (zircon, Nb-rich rutile) gave U–Pb (Th-disequilibrium corrected) ages at ca 0.93 ± 0.1 Ma. The Bo Loei sapphires show higher Fe and Ga than other magmatic sapphire suites elsewhere in Cambodia (Pailin), Laos (Ban Huai Sai, Ban Sam Sai), South Vietnam (Dak Nong, Dak Lac) and SE Thailand (Chanthaburi-Trat). This suggests potential for geographic typing of sapphire suites between these different fields.  相似文献   
13.
Myanmar is located in Southeast Asia within the Mekong River Basin. The estimated annual surface and groundwater potentials are 1 081 km3 and 494 km3, respectively. Based on geological conditions, 11 different types of aquifers have been classified in Myanmar. The recent alluvial formation, Irrawaddy formation, Upper Pegu Group and Plateau limestone formation are the major water-bearing geologic formations of the country. In Myanmar, 89% of the groundwater is used for agriculture, approximately 8% is used for domestic consumption, and 3% is used for industrial purposes. Climate change projections for Myanmar from 2001 to 2100 predict general increases in temperature, clear-sky days, rainfall variability and flooding risks and a greater occurrence and intensity of extreme weather events across the country. Additional technology and investments are required to achieve groundwater resource security in response to climate changes. In addition, methods of ensuring the sustainability of groundwater resources must be implemented via collaborations with other countries and international sources.  相似文献   
14.
The Phu Lon skarn Cu–Au deposit is located in the northern Loei Fold Belt (LFB), Thailand. It is hosted by Devonian volcano-sedimentary sequences intercalated with limestone and marble units, intruded by diorite and quartz monzonite porphyries. Phu Lon is a calcic skarn with both endoskarn and exoskarn facies. In both skarn facies, andradite and diopside comprise the main prograde skarn minerals, whereas epidote, chlorite, tremolite, actinolite and calcite are the principal retrograde skarn minerals.Four types of fluid inclusions in garnet were distinguished: (1) liquid-rich inclusions; (2) daughter mineral-bearing inclusions; (3) salt-saturated inclusions; and (4) vapor-rich inclusions. Epidote contains only one type of fluid inclusion: liquid-rich inclusions. Fluid inclusions associated with garnet (prograde skarn stage) display high homogenization temperatures and moderate salinities (421.6–468.5 °C; 17.4–23.1 wt% NaCl equiv.). By contrast, fluid inclusions associated with epidote (retrograde skarn stage) record lower homogenization temperatures and salinities (350.9–399.8 °C; 0.5–8 wt% NaCl equiv.). These data suggest a possible mixing of saline magmatic fluids with external, dilute fluid sources (e.g., meteoric fluids), as the system cooled. Some fluid inclusions in garnet contain hematite daughters, suggesting an oxidizing magmatic environment. Sulfur isotope determinations on sulfide minerals from both the prograde and retrograde stages show a uniform and narrow range of δ34S values (?2.6 to ?1.1 δ34S), suggesting that the ore-forming fluid contained sulfur of orthomagmatic origin. Overall, the Phu Lon deposit is interpreted as an oxidized Cu–Au skarn based on the mineralogy and fluid inclusion characteristics.  相似文献   
15.
The breccia-hosted epithermal gold–silver deposit of Chah Zard is located within a high-K, calc-alkaline andesitic to rhyolitic volcanic complex in the central part of the Urumieh-Dokhtar Magmatic Arc (UDMA), west central Iran. The total measured resource for Chah Zard is ∼2.5 million tonnes of ore at 12.7 g/t Ag and 1.7 g/t Au (28.6 t Ag, 3.8 t Au), making it one of the largest epithermal gold deposits in Iran. Magmatic and hydrothermal activity was associated with local extensional tectonics in a strike-slip regime formed in transtensional structures of the Dehshir-Baft strike-slip fault system. The host rocks of the volcanic complex consist of Eocene sedimentary and volcanic rocks covered by Miocene sedimentary rocks. LA-ICP–MS U–Pb zircon geochronology yields a mean age of 6.2 ± 0.2 Ma for magmatic activity at Chah Zard. This age represents the maximum age of mineralization and may indicate a previously unrecognized mineralization event in the UDMA. Breccias and veins formed during and after the waning stages of explosive brecciation events due to shallow emplacement of rhyolite porphyry. Detailed systematic mapping leads to the recognition of three distinct breccia bodies: volcaniclastic breccia with a dominantly clastic matrix; gray polymict breccia with a greater proportion of hydrothermal cement; and mixed monomict to polymict breccia with clay matrix. The polymictic breccias generated bulk-mineable ore, whereas the volcaniclastic breccia is relatively impermeable and largely barren. Precious metals occur with sulfide and sulfosalt minerals as disseminations, as well as in the veins and breccia cements. There is a progression from pyrite-dominated (stage 1) to pyrite-base metal sulfide and sulfosalt-dominated (stages 2 and 3) to base metal sulfide-dominated (stage 4) breccias and veins. Hydrothermal alteration and deposition of gangue minerals progressed from illite-quartz to quartz-adularia, carbonate, and finally gypsum-dominated assemblages. Free gold occurs in stages 2 and 4, principally intergrown with pyrite, quartz, chalcopyrite, galena, sphalerite, and Ag-rich tennantite–tetrahedrite, and also as inclusions in pyrite. High Rb/Sr ratios in ore-grade zones are closely related to sericite and adularia alteration. Positive correlations of Au and Ag with Cu, As, Pb, Zn, Sb, and Cd in epithermal veins and breccias suggest that all these elements are related to the same mineralization event.  相似文献   
16.
The 50 km2 Monywa copper district lies near the Chindwin River within the northward continuation of the Sunda‐Andaman magmatic arc through western Myanmar. There are four deposits; Sabetaung, Sabetaung South, Kyisintaung, and the much larger Letpadaung 7 km to the southeast. Following exploration drilling which began in 1959, production of copper concentrates from a small open pit started at Sabetaung in 1983. Since 1997, when resources totaled 7 million tonnes contained copper in 2 billion tonnes ore, a heap leach–electro‐winning operation has produced over 400,000 t copper cathode from Sabetaung and Sabetaung South. Ore is hosted by mid‐Miocene andesite or dacite porphyry intrusions, and by early mid‐Miocene sandstone and overlying volcaniclastics including eruptive diatreme facies which the porphyries intrude. District‐wide rhyolite dykes and domes with marginal breccias probably post‐date andesite porphyries in the mine area and lack ore‐grade copper. Host rocks to mineralization are altered to phyllic and advanced argillic hydrothermal assemblages within an outer chlorite zone; hypogene alunite is most abundant at Letpadaung and Kyisintaung. Most mineralization is structurally‐controlled with digenite‐chalcocite in breccia dykes, in steeply dipping NE‐trending sheeted veins, and in stockwork and low‐angle sulfide veins. A high‐grade pipe at Sabetaung grades up to 30% Cu, and much of the ore at Sabetaung South is in a NE‐trending zone of mega‐breccia and stockworked sandstone. The hydrothermal alteration, together with replacement quartz, alunite and barite in breccia dykes and veins, the virtual absence of vein quartz, and the presence of chalcopyrite and bornite only as rare veins and as inclusions within the abundant pyrite, indicate that the deposits are high sulfidation. Regional uplift, resistance to erosion and leaching of the altered and mineralized rocks have resulted in porous limonite‐stained leached caps over 200 m thick forming the Letpadaung and Kyisintaung hills. The barren caps pass abruptly downwards at the water table into the highest grade ore at the top of the supergene enrichment zone, within which copper grade, supergene kaolinite and cubic alunite decrease, and pyrite increases with depth; in contrast, marcasite is mostly shallow. Much of the copper to depths exceeding 200 m below the water table occurs as supergene digenite‐chalcocite and minor covellite. Disseminated chalcocite is mostly near‐surface and hence almost certainly supergene. We infer that during prolonged uplift at all four deposits, oxidation of residual pyrite at the water table generated enough acid to leach all the copper from earlier supergene‐enriched ore; below the water table the resulting acid sulfate solutions partly replaced enargite, covellite, chalcopyrite, bornite and pyrite with supergene chalcocite. Undeformed upward‐fining cross‐bedded conglomerates and sands of the ancestral Chindwin River floodplain overlie the margins of the Sabetaung deposits, form a major aquifer up to 40 m thick, and are a potential host for exotic copper mineralization. A mid‐Miocene pluton is inferred to underlie the Monywa deposits, but the possibility of porphyry‐type mineralization within the district is at best highly speculative.  相似文献   
17.
The molecular weight (M. W.) distributions of iron and manganese species in dam water samples were investigated by use of gel filtration, while the ion-exchangeable and non-ion-exchangeable fractions of these metals were also analysed by ion-exchange chromatography. For the samples studied, more than 96 per cent of the manganese species present were found to be ion-exchangeable, whilst less than 35 per cent of iron species were ion-exchangeable. These results correlated with the finding that all the manganese species had molecular weights less than 700, but that the molecular weights of the iron species were mostly in excess of 5000. Electron paramagnetic resonance (EPR) spectroscopy has been used to support the finding that manganese is almost totally present in the form of simple aquated Mn(II) ions.  相似文献   
18.
Zaw Win Ko  M. Enami  M. Aoya   《Lithos》2005,81(1-4):79-100
The Sanbagawa metamorphic rocks in the Besshi district, central Shikoku, are grouped into eclogite and noneclogite units. Chloritoid and barroisite-bearing pelitic schists occur as interlayers within basic schist in an eclogite unit of the Seba area in the Sanbagawa metamorphic belt, central Shikoku, Japan. Major matrix phases of the schists are garnet, chlorite, barroisite, paragonite, phengite, and quartz. Eclogite facies phases including chloritoid and talc are preserved only as inclusions in garnet. PT conditions for the eclogite facies stage estimated using equilibria among chloritoid, barroisite, chlorite, interlayered chlorite–talc, paragonite, and garnet are 1.8 GPa/520–550 °C. Zonal structures of garnet and matrix amphibole show discontinuous growth of minerals between their core and mantle parts, implying the following metamorphic stages: prograde eclogite facies stage→hydration reaction stage→prograde epidote–amphibolite stage. This metamorphic history suggests that the Seba eclogite lithologies were (1) juxtaposed with subducting noneclogite lithologies during exhumation and then (2) progressively recrystallized under the epidote–amphibolite facies together with the surrounding noneclogite lithologies.

The pelitic schists in the Seba eclogite unit contain paragonite of two generations: prograde phase of the eclogite facies included in garnet and matrix phase produced by local reequilibration of sodic pyroxene-bearing eclogite facies assemblages during exhumation. Paragonite is absent in the common Sanbagawa basic and pelitic schists, and is, however, reported from restricted schists from several localities near the proposed eclogite unit in the Besshi district. These paragonite-bearing schists could be lower-pressure equivalents of the former eclogite facies rocks and are also members of the eclogite unit. This idea implies that the eclogite unit is more widely distributed in the Besshi district than previously thought.  相似文献   

19.
The Pennaichaung and Yetkanzintaung W-Sn Prospects are located in Tavoy Township, Tennasserim Division, southern Burma. The W-Sn mineralization at the Pennaichaung is closely related with a small, satellitic granitoid pluton of presumably Late Mesozoic age, which intruded the metaclastic rocks of Mergui Group (mostly Carboniferous). The mineralized quartz veins at the Pennaichaung penetrated the granitoid-metasedimentary rocks contact. In contrary to the Pennaichaung deposit, the W-Sn veins at the Yetkanzintaung are exclusively in the metasedimentary rocks of slates and quartzites of Margui Group. Mineralized quartz veins in the Pennaichaung area trend NNE-SSW, NW-SE and NE-SW with a maximum thickness of 30 cm, but only quartz veins trending NNE-SSW are found to be productive and contained economically workable wolframite and cassiterite. Majority of the mineralized quartz veins in the Yetkanzintaung area trend approximately N-S with easterly dip of 50°–70°. The thickness of the ore veins in the Yetkanzintaung area are thinner than those of the Pennaichaung and range from 1 cm to 20 cm with an average width of 5 cm. Fluid inclusion studies of the quartz from the ore veins cutting the granitoid in the Pennaichaung area have yielded a filling temperature range of 170°–270°C with a maximum mode of 220°C, while quartz crystals from the ore veins in the nearby metasedimentary rocks gave a filling temperature range of 140°–220°C with a maximum mode of 160°C. Hence, the Pennaichaung deposit was thought to have emplaced under a filling temperature range of 140°–270°C. A similar low filling temperature range was recorded for the Yetkanzintaung deposit. Quartz from the Yetkanzintaung ore veins have yielded filling temperatures of 200°–240°C, whereas the fluorites associated with the mineralized quartz veins gave a temperature range of 140°–160°C. Limited freezing runs indicate a salinity of less than 5 NaCl equivalent weight percent for inclusions in quartz from both orebodies. No fluid inclusion evidence of boiling of ore fluids nor presence of liquid CO2 was observed in this study. Thus, the ore fluids responsible for the W-Sn mineralization at the Pennaichaung and Yetkanzintaung areas were of low temperature, diluted, CO2-deficient, NaCl brines.  相似文献   
20.
Nature, diversity of deposit types and metallogenic relations of South China   总被引:5,自引:10,他引:5  
The South China Region is rich in mineral resources and has a wide diversity of deposit types. The region has undergone multiple tectonic and magmatic events and related metallogenic processes throughout the earth history. These tectonic and metallogenic processes were responsible for the formation of the diverse styles of base and precious metal deposits in South China making it one of the resource-rich regions in the world. During the Proterozoic, the South China Craton was characterised by rifting of continental margin before eruption of submarine volcanics and development of platform carbonate rocks, and the formation of VHMS, stratabound copper and MVT deposits. The Phanerozoic metallogeny of South China was related to opening and closing of the Tethyan Ocean involving multiple orogenies by subduction, back-arc rifting, arc–continent collision and post-collisional extension during the Indosinian (Triassic), Yanshanian (Jurassic to Cretaceous) and Himalayan (Tertiary) Orogenies. The Late Palaeozoic was a productive metallogenic period for South China resulting from break-up and rifting of Gondwana. Significant stratabound base and precious metal deposits were formed during the Devonian and Carboniferous (e.g., Fankou and Dabaoshan deposits). These Late Palaeozoic SEDEX-style deposits have been often overprinted by skarn systems associated with Yanshanian magmatism (e.g., Chengmenshan, Dongguashan and Qixiashan). A number of Late Palaeozoic to Early Mesozoic VHMS deposits also developed in the Sanjiang fold belt in the western part of South China (e.g., Laochang and Gacun).South China has significant sedimentary rock-hosted Carlin-like deposits, which occur in the Devonian- to Triassic-aged accretionary wedge or rift basins at the margin of the South China Craton. They are present in a region at the junction of Yunnan, Guizhou, and Guangxi Provinces called the ‘Southern Golden Triangle’, and are also present in NW Sichuan, Gansu and Shaanxi, in an area known as the ‘Northern Golden Triangle’ of China. These deposits are mostly epigenetic hydrothermal micron-disseminated gold deposits with associated As, Hg, Sb + Tl mineralisation similar to Carlin-type deposits in USA. The important deposits in the Southern Golden Triangle are Jinfeng (Lannigou), Zimudang, Getang, Yata and Banqi in Guizhou Province, and the Jinya and Gaolong deposits in Guangxi District. The most important deposits in the Northern Golden Triangle are the Dongbeizhai and Qiaoqiaoshang deposits.Many porphyry-related polymetallic copper–lead–zinc and gold skarn deposits occur in South China. These deposits are related to Indosinian (Triassic) and Yanshanian (Jurassic to Cretaceous) magmatism associated with collision of the South China and North China Cratons and westward subduction of the Palaeo-Pacific Plate. Most of these deposits are distributed along the Lower to Middle Yangtze River metallogenic belt. The most significant deposits are Tonglushan, Jilongshan, Fengshandong, Shitouzui and Jiguanzui. Au–(Ag–Mo)-rich porphyry-related Cu–Fe skarn deposits are also present (Chengmenshan and Wushan in Jiangxi Province and Xinqiao, Mashan-Tianmashan, Shizishan and Huangshilaoshan in Anhui Province). The South China fold belt extending from Fujian to Zhejiang Provinces is characterised by well-developed Yanshanian intrusive to subvolcanic rocks associated with porphyry to epithermal type mineralisation and mesothermal vein deposits. The largest porphyry copper deposit in China, Dexing, occurs in Jiangxi Province and is hosted by Yanshanian granodiorite. The high-sulphidation epithermal system occurs at the Zijinshan district in Fujian Province and epithermal to mesothermal vein-type deposits are also found in the Zhejiang Province (e.g., Zhilingtou). Part of Shandong Province is located at the northern margin of the South China Craton and the province has unique world class granite-hosted orogenic gold deposits. Occurrences of Pt–Pd–Ni–Cu–Co are found in Permian-aged Emeishan continental flood basalt (ECFB) in South China (Jinbaoshan and Baimazhai in Yunnan Province and Yangliuping in Sichuan Province). South China also has major vein-type tungsten–tin–bismuth–beryllium–sulphide and REE deposits associated with Yanshanian magmatism (e.g., Shizhuyuan and Xihuashan), important world class stratabound base metal–tin deposits (Dachang deposit), and the large antimony deposits (Xikuangshan and Woxi). During the Himalayan Orogeny, many giant deposits were formed in South China including the recently emerging Yulong and Gangdese porphyry copper belts in Tibet and the Ailaoshan orogenic gold deposits in Yunnan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号