首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
大气科学   2篇
地球物理   15篇
地质学   22篇
海洋学   8篇
天文学   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1962年   1篇
  1951年   1篇
排序方式: 共有50条查询结果,搜索用时 566 毫秒
41.
42.
43.
A wrong finite difference form is used for the rotation of the Coriolis force in the vorticity equation with bottom topography in a series of papers byEndoh.  相似文献   
44.
45.
46.
Wyomingite collected from Leucite Hills is composed mainly of leucite, diopside, phlogopite, and small amounts of apatite, calcite, magnetite and rare amphibole, and is characterized by very high content of potash. Thermal experiments at atmospheric pressure indicate that the liquidus phase is always diopside with liquidus temperature of 1320 °C, and solidus temperature is about 1000 °C. Various kinds of melt inclusions are abundant in all constituent minerals. They comprise mono-phase (glass only), two-phase (gas+glass), three-phase (gas+glass+one crystalline phase) and multi-phase (gas+glass+more than two crystalline phases) inclusions. Thermal experiments have been made on these inclusions in phlogopite, diopside, and leucite in order to estimate the temperature of crystallization by homogenizing these inclusions. The results show that the crystallization of wyomingite began with formation of phlogopite accompanied by diopside at 1270 °C. Although diopside ceased crystallization at 1220 °C recurrent crystallization of phlogopite was noticed between 1120 ° and 1040 °C. Leucite crystallized out abundantly between 1250 ° and 1150 °C. Complete solidification of wyomingite occurred at about 1000 °C.  相似文献   
47.
Geochemical studies were conducted on the hydrothermally altered granitic rocks in the Ranong and Takua Pa tin‐fields in southern Thailand in order to investigate the mode of occurrence of REE (rare earth elements), with emphasis placed on a potential REE resource associated with granitic rocks in the Southeast Asian Tin Belt. The total REE (ΣREE) content of altered granitic rocks ranges from 130 to 350 ppm at Haad Son Paen (which is presently mined for kaolin clay) in the Ranong tin‐field, and that of altered granitic rocks and kaolinite veinlets reaches up to 424 ppm and 872 ppm, respectively, at Nok Hook in the Takua Pa tin‐field. Rare earth elements in the altered granitic rocks and kaolinite veinlets show a relatively flat chondrite‐normalized pattern, thus enriched in heavy REE compared with the original granitic rocks and their weathered crusts. At Nok Hook (Takua Pa), the ΣREE content of kaolinite separated from an altered granitic rock by elutriation is 1313 ppm, a ΣREE amount about four times higher than that of whole‐rock composition of the altered granitic rock. Chondrite‐normalized REE patterns of the elutriated kaolinite and of the altered granite are relatively flat. Sequential extraction experiments suggest that 41 and 85 percent of REE are present as ion exchangeable‐form in the altered granitic rock, and in the kaolinite veinlets, respectively. In addition, more than 90% of REE in the kaolinite veinlets are present as the acid‐soluble state. On the other hand, the ΣREE content of kaolinite veinlets and of the kaolinite concentrated by elutriation from an altered granitic rock at Haad Som Paen (Ranong) is 70 ppm and 75 ppm, respectively, thus enrichment of REE in kaolinite was not confirmed. In addition, by the sequential extraction experiments, 23% and 4% of REE were extracted from the altered granitic rock and the kaolinite veinlets at Haad Som Paen. In the altered granitic rocks at Haad Som Paen, REE are present as refractory phases, and REE in the acid‐soluble states had been leached by hydrothermal fluid.  相似文献   
48.
In order to discuss the relationship between the lower and higher frequency components of earthquake source spectra, we deal with impulse train model as source time function of earthquake, because spectral characteristics of source time function depend on occurrence times of impulse function which corresponds to small extent on the fault. Then, the spectral characteristics of source time function are obtained analytically and numerically from the stochastic viewpoints: namely, on one hand, the trend of impulse train dominates the frequency characteristics in low frequency range, and on the other hand, the fluctuation from the trend settles high frequency range. Furthermore, it is shown that the spectral properties of source time function can be determined using only two parameters which are number of impulses n and the probability density function of occurrence time of impulses fT(t).  相似文献   
49.
The Fukusen No. 1 vein is located in the southeastern part of the Yamada deposit, Hishikari epithermal gold deposits, southern Kyushu, Japan. 40Ar/39Ar plateau ages of adularia from the margin and the center of the Fukusen vein are determined to be 0.617 ± 0.024 Ma and 0.606 ± 0.009 Ma, respectively. The Fukusen No. 1 vein shows banding structure composed mainly of quartz, adularia and clay minerals. Colloform texture is displayed by cryptocrystalline to amorphous silica material that is associated with fine-grained electrum and sulfides near the center of the vein. Pyrite in the Fukusen No. 1 vein often shows acicular shape resulting from inversion from marcasite. Near the center of the vein, primary marcasite occurs associated with colloform texture of silica. The Fukusen No.1 vein preserves primary texture and materials which were deposited from the ore-forming hydrothermal solution. The Fukusen No. 1 vein was formed in a short period and is one of the youngest veins in the Hishikari deposits.  相似文献   
50.
Mining operations in the Pinpet Fe deposit, which is the second‐largest Fe deposit in Myanmar, are currently suspended, in part because of possible contamination of heavy metals and hazardous elements (e.g., Fe, As, Cu, Zn, and U) into the surrounding aquatic environment and associated public concern. However, a scientific investigation of the source and degree of contamination in streams near the deposit has not yet been conducted. Therefore, we quantified heavy‐metal and hazardous‐element concentrations of stream waters and sediments in stream beds, and measured the speciation and concentration of these metals in deposit Fe ores using the sequential extraction method, to better understand the influence of mining activities on the surrounding environment. Geochemical results for Nan‐tank‐pauk stream and its tributaries indicate that the chemical compositions of their waters are controlled by carbonate bedrock and that no detectable contamination has occurred as a result of mining activity or hematite and limonite ore beneficiation processes in either the wet or dry seasons. All measured heavy‐metal and hazardous‐element concentrations were below the World Health Organization standards for drinking water and the proposed national drinking water quality standards in Myanmar. Bulk chemical compositions of stream‐bed and tailings dam sediments show that As, Zn, and Cu concentrations are similar to those in uncontaminated sediments. Results of bulk mineralogical and chemical analyses of ore samples reveal that some limonite ore samples contain substantial amounts of As (up to 2 wt%). However, sequential extraction results indicate that most (>90%) of the As in these As‐rich ores is hosted in insoluble fractions (e.g., crystalline Fe hydroxides and clays). Therefore, arsenic is unlikely to be released into the aquatic environment by interacting with water during ore beneficiation processes should the mine resume operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号