首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   23篇
  国内免费   5篇
大气科学   40篇
地球物理   77篇
地质学   126篇
海洋学   30篇
天文学   77篇
自然地理   38篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   11篇
  2020年   12篇
  2019年   6篇
  2018年   13篇
  2017年   14篇
  2016年   22篇
  2015年   12篇
  2014年   18篇
  2013年   21篇
  2012年   21篇
  2011年   29篇
  2010年   27篇
  2009年   25篇
  2008年   26篇
  2007年   20篇
  2006年   14篇
  2005年   13篇
  2004年   6篇
  2003年   11篇
  2002年   8篇
  2001年   10篇
  2000年   7篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有388条查询结果,搜索用时 15 毫秒
61.
The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough backarc basin in late Neogene time, erupting basalts at 3.7–2.7 Ma that are now exposed in the Southeast Mariana Forearc Rift (SEMFR). Today, SEMFR is a broad zone of extension that formed on hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30–50 km). It comprises NW–SE trending subparallel deeps, 3–16 km wide, that can be traced ≥ ∼30 km from the trench almost to the backarc spreading center, the Malaguana‐Gadao Ridge (MGR). While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly composed of Pliocene, low‐K basaltic to basaltic andesite lavas that are compositionally similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks have low Na8, Ti8, and Fe8, consistent with extensive melting, at ∼23 ± 6.6 km depth and 1239 ± 40°C, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab‐derived fluids. Stretching of pre‐existing forearc lithosphere allowed BAB‐like mantle to flow along the SEMFR and melt, forming new oceanic crust. Melts interacted with pre‐existing forearc lithosphere during ascent. The SEMFR is no longer magmatically active and post‐magmatic tectonic activity dominates the rift.  相似文献   
62.
Increased interest in climate change at local and regional scales has prompted climate simulations for regional areas, but tests of climate models have not specifically examined the impacts of regional heterogeneity, and they have largely overlooked possible temporal sensitivity. In this study I used a coupled surface-atmosphere mesoscale model to evaluate the effects of regional heterogeneity in five land-surface parameters that have the strongest impacts on the surface energy balance: albedo, roughness, canopy resistance, rooting profile, and soil water content. I included temporal variability in climate sensitivity by completing a series of mid-month simulations representative of the June-September growing season. I modeled land surfaces of maize contrasted with bare soil, grass, or coniferous trees. Roughness discontinuities were important factors in determining regional energy balance and surface temperature for all three surface contrasts. The effects varied over the growing season as a function of maize height. Canopy resistance was equally important, especially during the middle of the season when the maize canopy was at its fullest extent. Albedo effects appeared to be secondary, but often were more important in September. Changes in soil water content had little impact because vegetation in these simulations was not stressed by low soil moisture. The importance of roots in these simulations was primarily a function of their presence or absence, rather than of the specific profile assigned to each vegetation type. Roughness and canopy resistance discontinuities appeared to play the largest role in determining the regional average energy balance and surface temperature for growing season dates. [Key words: land-surface heterogeneity, energy balance, climatology.]  相似文献   
63.
This paper reviews how hazard data and geological map data have been combined by the British Geological Survey (BGS) to produce a set of GIS-based national-scale hazard susceptibility maps for the UK. This work has been carried out over the last 9 years and as such reflects the combined outputs of a large number of researchers at BGS. The paper details the inception of these datasets from the development of the seamless digital geological map in 2001 through to the deterministic 2D hazard models produced today. These datasets currently include landslides, shrink-swell, soluble rocks, compressible and collapsible deposits, groundwater flooding, geological indicators of flooding, radon potential and potentially harmful elements in soil. These models have been created using a combination of expert knowledge (from both within BGS and from outside bodies such as the Health Protection Agency), national databases (which contain data collected over the past 175 years), multi-criteria analysis within geographical information systems and a flexible rule-based approach for each individual geohazard. By using GIS in this way, it has been possible to model the distribution and degree of geohazards across the whole of Britain.  相似文献   
64.
We analyzed hydrogen isotope ratios of high-molecular weight n-alkanes (δDl) and oxygen isotope ratios of α-cellulose (δ18OC) for C3 and C4 grasses grown in the field and in controlled-environment growth chambers. The relatively firm understanding of 18O-enrichment in leaf water and α-cellulose was used to elucidate fractionation patterns of δDl signatures. In the different relative humidity environments of the growth chambers, we observed clear and predictable effects of leaf-water enrichment on δ18OC values. Using a Craig-Gordon model, we demonstrate that leaf water in the growth chamber grasses should have experienced significant D-enriched due to transpiration. Nonetheless, we found no effect of transpirational D-enrichment on the δDl values. In field samples, we saw clear evidence of enrichment (correlating with relative humidity of the field sites) in both δ18OC and δDl. These seemingly contrasting results could be explained if leaf waxes are synthesized in an environment that is isotopically similar to water entering plant roots due to either temporal or spatial isolation from evaporatively enriched leaf waters. For grasses in the controlled environment, there was no enrichment of source water, whereas enrichment of grass source water via evaporation from soils and/or stems was likely for grass samples grown in the field.Based on these results, evaporation from soils and/or stems appears to affect δDl, but transpiration from leaves does not. Further evidence for this conclusion is found in modeling expected net evapotranspirational enrichment. A Craig-Gordon model applied to each of the field sites yields leaf water oxygen isotope ratios that can be used to accurately predict the observed δ18OC values. In contrast, the calculated leaf water hydrogen isotope ratios are more enriched than what is required to predict observed δDl values. These calculations lend support to the conclusion that while δ18OC reflects both soil evaporation and transpiration, δDl appears to only record evaporation from soils and/or stems. Therefore, the δD of n-alkanes can likely be used to reconstruct the δD of water entering a leaf, supporting the soil-enrichment model of Smith and Freeman (2006). In both the field and controlled studies, we found significant photosynthetic pathway effects on n-alkane δD suggesting that biochemical pathways or plant phylogeny have a greater effect on leaf wax δD than leaf-water enrichment in grasses.  相似文献   
65.
Nutrient concentrations, primary productivity, and nitrogen uptake rates were measured in coastal waters of the Mid-Atlantic Bight over a two-year period that included measurements from all four seasons. In order to assess carbon productivity and nitrogen demand within the context of the physical environment, the region was divided into three distinct hydrographic regimes: the Chesapeake and Delaware Bay outflow plumes (PL), the southern Mid-Atlantic shelf influenced by the Gulf Stream (SS), and the mid-shelf area to the north of the Chesapeake Bay mouth (MS). Annual areal rates of total nitrogen (N) uptake were similar across all regions (10.9 ± 2.1 mol N m−2 y−1). However, annual areal rates of net primary productivity were higher in the outflow plume region (43 mol C m−2 y−1), than along the Mid-Atlantic shelf and in areas influenced by the Gulf Stream (41 and 34 mol C m−2 y−1, respectively). Rates of net primary productivity were not well correlated with Chl a concentrations and were uncoupled with net N uptake rates. Seasonally averaged annual areal rates of net primary productivity for the Mid-Atlantic Bight measured in this study were higher than those calculated in previous decades and provide important validation information for biogeochemical models and satellite remote sensing algorithms developed for the region.  相似文献   
66.
Hydrothermal alteration mapping with spaceborne hyperspectral data was simulated in the Comstock mining district, Nevada in order to evaluate the mineral mapping capabilities of the proposed Australian Resource Information and Environment Satellite (ARIES‐1). As a result, a suite of hydrothermal alteration minerals, including kaolinite, dickite, illite, chlorite, alunite and carbonate was identified from the simulated data in the 0.4–2.5 μm wavelength region and their areal abundance variations mapped accordingly. The recognised alteration zoning shows a major change in alteration assemblages across the Comstock and Silver City Faults, and a gradual variation from north to south along the faults. In the bleached Miocene volcanic rocks, dickite, kaolinite, illite and alunite were recognised. Coexistence of dickite of relatively high temperature, high‐crystallinity kaolinite of medium temperature and low‐crystallinity kaolinite of low temperature suggests supergene processes overprinting earlier hypogene alteration. The bleached rocks probably represent hydrothermal alteration in the fluid up‐flow zones in the central and shallower parts of the hydrothermal system. Illite in the bleached zones is characterised by relatively short AI–OH band wavelengths (2190–2200 nm), indicating no or very low Fe and/or Mg contents. Fault‐controlled propylitic alteration is mapped in the central part of the district mainly in the footwall of the Comstock Fault. The associated illite is characterised mainly by medium AI–OH band wavelengths (2200–2208 nm). This propylitic alteration may be contemporaneous with Au–Ag mineralisation. Additional and more extensive propylitic zones, containing illite with long AI–OH band wavelengths (2204–2216 nm), were mapped in the southern part of the district. These zones resulted from either a pre‐mineralisation propylitic alteration, or the peripheral hydrothermal alteration in the fluid down‐flow zones of the Miocene hydrothermal system.  相似文献   
67.
DET (diffusive equilibrium in thin films) gel probes were used for sampling river-bed sediment porewaters, to characterise in situ soluble reactive phosphorus (SRP) concentration profiles and fluxes. DET probes were deployed in three contrasting rural streams: (1) a headwater ‘pristine’ stream, with minimal P inputs from low intensity grassland and no point sources, (2) an intensively cultivated arable catchment, and (3) a stream subject to high P loadings from sewage effluent and intensive arable farming. The DET results showed highly enriched porewater SRP concentrations of between ca. 400 and 5000 μg-P l−1 in the sewage-impacted stream. In contrast, the arable and pristine streams had porewater SRP concentrations <70 μg-P l−1 and <20 μg-P l−1, respectively. Porewater SRP concentration profiles in both the sewage-impacted and arable-impacted streams showed well-defined vertical structure, indicating internal sources and sinks of SRP within the sediment. However, there was little variability in porewater SRP concentrations in the pristine stream. The DET porewater profiles indicated net diffusion of SRP (a) from the overlying river water into the surface sediment and (b) from subsurface sediment upwards towards the sediment–water interface. A mass balance for the sewage-impacted site showed that the influx of SRP into the surface sediments from the overlying river water was small (ca. 1% of the daily river SRP load). The DET results indicated that, in the arable and sewage-impacted streams, the surface ‘cap’ of fine sediment may play an important role in inhibiting upward movement of SRP from subsurface porewaters into the overlying river water, under steady-state, low-flow conditions.  相似文献   
68.
This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.  相似文献   
69.
We examined ontogenetic, interspecific, and seasonal trophic patterns among sympatric sunfish species, redspotted sunfish,Lepomis miniatus; redear sunfish,Lepomis microlophus; and bluegill,Lepomis macrochirus, in an estuarine bayou. In particular we studied these feeding patterns in relation to relative abundances of prey from different benthic feeding habitats. All three sunfishes showed ontogenetic divergence in their trophic niches, reflecting different ecomorphological specializations. Small fishes depended on zooplankton, whereas larger fishes of all three species shifted their diets to benthic macrofauna. A potential for trophic resource partitioning was reflected by dietary differences among the three sunfish species. One impalied mechanism for resource partitioning was feeding habitat, as redear sunfish frequently used sediment-associated prey, while bluegill showed greater use of water-column-associated prey, and redspotted sunfish often used SAV-associated prey. However, all three sunfishes apparently used each feeding habitat to some degree; and, trophic differences were more clearly based on prey type than on feeding habitat. Redear sunfish, which can crush hard-shelled prey, exhibited the most distinctive diet. An apparent seasonal shift in feeding habitat occurred in autumn/winter, as indicated by increased overlap between diets and SAV. This shift was facilitated by changes in the relative abundances of several common prey types between benthic habitats. The relative abuandance and use of freshwater and estuarine-derived prey also varied seasonally, suggesting a possible trophic benefit of consistent prey availability in the estuarine bayou.  相似文献   
70.
The mangrove or mud crab, Scylla serrata, is an important component of mangrove fisheries throughout the Indo-Pacific. Understanding crab diets and habitat use should assist in managing these fisheries and could provide additional justification for conservation of the mangrove ecosystem itself. We used multiple chemical tracers to test whether crab movements were restricted to local mangrove forests, or extended to include adjacent seagrass beds and reef flats. We sampled three mangrove forests on the island of Kosrae in the Federated States of Micronesia at Lelu Harbor, Okat River, and Utwe tidal channel. Samples of S. serrata and likely food sources were analyzed for stable carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) isotopes. Scylla serrata tissues also were analyzed for phosphorus (P), cations (K, Ca, Mg, Na), and trace elements (Mn, Fe, Cu, Zn, and B). Discriminant analysis indicated that at least 87% of the crabs remain in each site as distinct populations. Crab stable isotope values indicated potential differences in habitat use within estuaries. Values for δ13C and δ34S in crabs from Okat and Utwe were low and similar to values expected from animals feeding within mangrove forests, e.g., feeding on infauna that had average δ13C values near −26.5‰. In contrast, crabs from Lelu had higher δ13C and δ34S values, with average values of −21.8 and 7.8‰, respectively. These higher isotope values are consistent with increased crab foraging on reef flats and seagrasses. Given that S. serrata have been observed feeding on adjacent reef and seagrass environments on Kosrae, it is likely that they move in and out of the mangroves for feeding. Isotope mixing model results support these conclusions, with the greatest mangrove ecosystem contribution to S. serrata diet occurring in the largest mangrove forests. Conserving larger island mangrove forests (> 1 km deep) appears to support crab foraging activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号