首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
大气科学   3篇
地球物理   4篇
地质学   12篇
海洋学   8篇
天文学   5篇
自然地理   2篇
  2013年   2篇
  2011年   1篇
  2008年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1979年   2篇
  1974年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
12.
Abstract— The oxidized CV3 chondrites can be divided into two major subgroups or lithologies, Bali-like (CV3oxB) and Allende-like (CV3oxA), in which chondrules, calcium-aluminum-rich inclusions (CAIs) and matrices show characteristic alteration features (Weisberg et al, 1997; Krot et al, 1997d; Kimura and Ikeda, 1997). The CV3oxB lithology is present in Bali, Kaba, parts of the Mokoia breccia and, possibly, in Grosnaja and Allan Hills (ALH) 85006. It is characterized by the presence of the secondary low-Ca phyllosilicates (saponite and sodium phlogopite), magnetite, Ni-rich sulfides, fayalite (Fa>90), Ca-Fe-rich pyroxenes (Fs10–50Wo45–50) and andradite. Phyllosilicates replace primary Ca-rich minerals in chondrules and CAIs, which suggests mobilization of Ca during aqueous alteration. Magnetite nodules are replaced to various degrees by fayalite, Ca-Fe-rich pyroxenes and minor andradite. Fayalite veins crosscut fine-grained rims around chondrules and extend into the matrix. Thermodynamic analysis of the observed reactions indicates that they could have occurred at relatively low temperatures (<300 °C) in the presence of aqueous solutions. Oxygen isotopic compositions of the coexisting magnetite and fayalite plot close to the terrestrial fractionation line with large Δ18Ofayalite-magnetite fractionation (~20%). We infer that phyllosilicates, magnetite, fayalite, Ca-Fe-rich pyroxenes and andradite formed at relatively low temperatures (<300 °C) by fluid-rock interaction in an asteroidal environment. Secondary fayalite and phyllosilicates are virtually absent in chondrules and CAIs in the CV3oxA lithology, which is present in Allende and its dark inclusions, Axtell, ALHA81258, ALH 84028, Lewis Cliff (LEW) 86006, and parts of the Mokoia and Vigarano breccias. Instead secondary nepheline, sodalite, and fayalitic olivine are common. Fayalitic olivine in chondrules replaces low-Ca pyroxenes and rims and veins forsterite grains; it also forms coarse lath-shaped grains in matrix. Secondary Ca-Fe-rich pyroxenes are abundant. We infer that the CV3oxA lithology experienced alteration at higher temperatures than the CV3oxB lithology. The presence of the reduced and CV3oxA lithologies in the Vigarano breccia and CV3oxA and CV3oXB lithologies in the Mokoia breccia indicates that all CV3 chondrites came from one heterogeneously altered asteroid. The metamorphosed clasts in Mokoia (Krot and Hutcheon, 1997) may be rare samples of the hotter interior of the CV asteroid. We conclude that the alteration features observed in the oxidized CV3 chondrites resulted from the fluid-rock interaction in an asteroid during progressive metamorphism of a heterogeneous mixture of ices and anhydrous materials mineralogically similar to the reduced CV3 chondrites.  相似文献   
13.
Abstract— We have characterized Ca-Fe-rich silicates (salite-hedenbergite pyroxenes (Fs10–50Wo45–50), andradite (Ca3Fe2Si3O12), kirschsteinite (CaFeSiO4), and wollastonite (Ca3Si3O9)) in the type I chondrules and matrices in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. In type I chondrules in the Bali-like CV3 chondrites, metal is oxidized to magnetite; magnetite-sulfide nodules are replaced by Ca-Fe-rich pyroxenes with minor andradite and pure fayalite. We infer that Ca-Fe-rich pyroxenes, andradite, fayalite, magnetite, and phyllosilicates (which occur in mesostases) formed at relatively low temperatures (<300 °C) in the presence of aqueous solutions. Thermodynamic analysis of phase relations in the Si-Fe-Ca-O-H system and large O isotopic fractionation of the coexisting magnetite and fayalite (~20%) (Krot et al., 1998) are consistent with this interpretation. In type I chondrules in the Allende-like CV3 chondrites and dark inclusions, magnetite-sulfide nodules are replaced by Ca-Fe-rich pyroxenes and ferrous olivine; low-Ca pyroxene and forsterite phenocrysts are rimmed and veined by ferrous olivine. It appear that the Ca-Fe-rich pyroxenes predate formation of ferrous olivine; the latter postdates formation of talc and biopyriboles (Brearley, 1997). The Allende dark inclusions are crosscut by Ca-Fe-pyroxene-andradite veins and surrounded by Ca-rich rims that consist of Ca-Fe-rich pyroxenes, andradite, wollastonite, and kirschsteinite. Calcium-rich veins and rims formed after aggregation and lithification of the dark inclusions. The rimmed dark inclusions show zoned depletion in Ca, which is due to a lower abundance of Ca-Fe-rich pyroxenes close to the rim. Calcium was probably leached from the inclusions and redeposited along their edges. We infer that the Allende-like chondrites and dark inclusions experienced similar aqueous alteration to the Bali-like chondrites and were metamorphosed subsequently, which resulted in loss of aqueous solutions and dehydration of phyllosilicates. We conclude that Ca-Fe-rich silicates in the oxidized CV3 chondrites and Allende dark inclusions are secondary and resulted from aqueous fluid-rock interactions during progressive metamorphism of a heterogeneous mixture of hydrous (ices?) and anhydrous materials; the latter were possibly mineralogically similar to the reduced CV3 chondrites.  相似文献   
14.
An analysis of subfossil insect remains (Diptera, Chironomidae) from an interglacial site at Narsaarsuk near Thule Air Base, NW Greenland, was undertaken to complement our understanding of last interglacial environments in the Arctic by analogue matching to modern chironomid assemblages. The subfossil larval midge head capsules were well preserved and 82% of the chironomid remains were identified as eight different extant chironomid taxa. The assemblage was dominated by the lotic Diamesa (43.8%), a number of lentic taxa (Hydrobaenus, Psectrocladius, Cricotopus/Orthocladius) and a few semi-aquatic taxa (Smittia, Chaetocladius). A single black fly head capsule (Diptera, Simuliidae) was registered. The interglacial sample was compared to subfossil chironomid assemblages from 42 lakes in West Greenland, two glacier lakes (with and without river influence) and a quantitative zoobenthos study from Narsaq Elv. Similarity analysis, analogue matching and multidimensional scaling suggest a lotic, cold, glacier-fed interglacial palaeo-biotope. Quantitative temperature reconstruction was not possible owing to a high dissimilarity to modern lentic chironomid assemblages from West Greenland. However, the simple numerical methods convincingly managed to reflect an interglacial river and stream environment, which can be difficult to document from other palaeoecological data.  相似文献   
15.
Pollen and mollusc deposits in a sedimentation series laid down in the Dattnau valley during the Late Glacial and early Post-glacial were studied. For the first time δ13C and δ18O in land-snail shells were measured. It was possible to reconstruct vegetational and climatic developments from the Bölling ( c . 12,500 B.P.) until well into the early Boreal ( c . 9,000 B.P.). The two sets of findings agree well. The Late Glacial is seen to comprise two intervals: the continuous, locally rather moist, warm Bölling/Alleröd period, and the subsequent dry . cold Younger Dryas. The profile ceases after the changeover from the Late Glacial to the Post-glacial. The transitions from the Alleröd to the Younger Dryas and hence to the Preboreal and Boreal are both clearly identifiable in the pollen diagram; the mollusc record, however, ceases to be interpretable shortly before the climatic change to the Post-glacial. The δ18O curve shows a clear distinction between the AllerÖd and the Younger Dryas. The Gerzensee fluctuation, immediately before this transition. is evident as a negative deviation.  相似文献   
16.
17.
The bulk composition of the continental crust throughout geological history is thought by most previous workers to be andesitic. This assumption of an andesitic bulk composition led to an early hypothesis by 72 ) that the continental crust was created by arc magmatism. This hypothesis for the origin of continental crust was challenged by several authors because: (i) the mean rate of arc crust addition obtained by 50 ) is too small to account for some certain phases of rapid crustal growth; and (ii) the bulk composition of ocean island arcs, the main contributor to the Archean and early Proterozoic crust, is basaltic rather than andesitic ( 4 ; 49 ). New data from the Northern Izu–Bonin arc are presented here which support the 72 ) hypothesis for the origin of the continental crust by andesitic arc magma. A geological interpretation of P wave crustal structure obtained from the Northern Izu–Bonin arc by 66 ) indicates that the arc crust has four distinctive lithologic layers: from top to bottom: (i) a 0.5–2-km-thick layer of basic to intermediate volcaniclastic, lava and hemipelagite (layer A); (ii) a 2–5-km-thick basic to intermediate volcaniclastics, lavas and intrusive layer (layer B); (iii) a 2–7-km-thick layer of felsic (tonalitic) rocks (layer C); and (iv) a 4–7-km-thick layer of mafic igneous rocks (layer D). The chemical composition of the upper and middle part of the northern Izu–Bonin arc is estimated to be similar to the average continental crust by 73 ). The rate of igneous addition of the Northern Izu–Bonin arc since its initial 45-Ma magmatism was calculated as 80 km3/km per million years. This rate of addition is considered to be a reasonable estimate for all arcs in the western Pacific. Using this rate, the global rate of crustal growth is estimated to be 2.96 km3/year which exceeds the average rate of crustal growth since the formation of the Earth (1.76 km3/year). Based on this estimate of continental growth and the previously documented sediment subduction and tectonic erosion rate (1.8 km3/year, 24 ), several examples of growth curves of the continental crust are presented here. These growth curves suggest that at least 50% of the present volume of the continental crust can be explained by arc magmatism. This conclusion indicates that arc magmatism is the most important contributor to the formation of continental crust, especially at the upper crustal level.  相似文献   
18.
19.
Oxygen-isotope and pollen analyses were carried out on late- and postglacial (Late Weichselian and Holo-cene) sediment samples of the raised bog. The 18O/16O-ratio results provide the first unequivocal proof for the Eastern Alps of the climatic deterioration of the Younger Dryas period. High NAP-values in the pollen diagram and a strong negative deviation in the oxygen-isotope curve characterize this period. The earlier Gerzensee fluctuation is also indicated by small changes in the oxygen-isotope curve. During the postglacial the Frosnitz climatic deterioration (6,000–6,500 B.P.) is evidenced as a fluctuation in the lake-level. The oxygen-isotope values indicate that the air temperature conditions remained unchanged at that time.  相似文献   
20.
Wavefront charts in anisotropic gradient media are a useful tool in ray geometric constructions, particular in shear-wave exploration. They can be constructed by: (i) a family of wavefronts that contains a vertical plane as member - it is convenient to choose constant time increments; (ii) tracing one ray that makes everywhere the angle with the normal to the wavefront that is required by the anisotropy of the medium; (iii) scaling this ray to obtain a set of rays with different ray parameters; (iv) shifting these rays (with wavefront elements attached) so that they pass through a common source point; (v) interpolating the wavefronts between the elements. The construction is particularly simple in linear-gradient media, since here all members of the family of wavefronts are planes. Since the ray makes everywhere the angle prescribed by the anisotropy with the normal of the (plane) wavefronts, the ray has the shape of the slowness curve rotated by ?π/2. For isotropic media the slowness curve is a circle, and thus rays are circular arcs. The circles themselves intersect in the source point and in a second point above the surface of the earth. This provides a simple proof that wavefronts emanating from a point source in an isotropic linear-gradient medium are spheres: inversion of the set of circular rays with the source as centre maps the pencil of circular rays into a pencil of straight lines passing through a point. A pencil of concentric spheres around this point is perpendicular to the pencil of straight lines. On inverting back the pencil of spheres is mapped into another pencil of spheres that is perpendicular to the circular rays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号