首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   6篇
  国内免费   2篇
大气科学   11篇
地球物理   31篇
地质学   56篇
海洋学   22篇
天文学   63篇
综合类   2篇
自然地理   14篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   9篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   13篇
  2011年   18篇
  2010年   5篇
  2009年   13篇
  2008年   13篇
  2007年   14篇
  2006年   14篇
  2005年   16篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1989年   1篇
  1985年   2篇
排序方式: 共有199条查询结果,搜索用时 531 毫秒
31.
The petrology and mineralogy of shock melt veins in the L6 ordinary chondrite host of Villalbeto de la Peña, a highly shocked, L chondrite polymict breccia, have been investigated in detail using scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and electron probe microanalysis. Entrained olivine, enstatite, diopside, and plagioclase are transformed into ringwoodite, low‐Ca majorite, high‐Ca majorite, and an assemblage of jadeite‐lingunite, respectively, in several shock melt veins and pockets. We have focused on the shock behavior of diopside in a particularly large shock melt vein (10 mm long and up to 4 mm wide) in order to provide additional insights into its high‐pressure polymorphic phase transformation mechanisms. We report the first evidence of diopside undergoing shock‐induced melting, and the occurrence of natural Ca‐majorite formed by solid‐state transformation from diopside. Magnesiowüstite has also been found as veins injected into diopside in the form of nanocrystalline grains that crystallized from a melt and also occurs interstitially between majorite‐pyrope grains in the melt‐vein matrix. In addition, we have observed compositional zoning in majorite‐pyrope grains in the matrix of the shock‐melt vein, which has not been described previously in any shocked meteorite. Collectively, all these different lines of evidence are suggestive of a major shock event with high cooling rates. The minimum peak shock conditions are difficult to constrain, because of the uncertainties in applying experimentally determined high‐pressure phase equilibria to complex natural systems. However, our results suggest that conditions between 16 and 28 GPa and 2000–2200 °C were reached.  相似文献   
32.
Salt tectonics in the Eastern Persian Gulf (Iran) is linked to a unique salt‐bearing system involving two overlapping ‘autochthonous’ mobile source layers, the Ediacaran–Early Cambrian Hormuz Salt and the Late Oligocene–Early Miocene Fars Salt. Interpretations of reflection seismic profiles and sequential cross‐section restorations are presented to decipher the evolution of salt structures from the two source layers and their kinematic interaction on the style of salt flow. Seismic interpretations illustrate that the Hormuz and Fars salts started flowing in the Early Palaeozoic (likely Cambrian) and Early Miocene, respectively, shortly after their deposition. Differential sedimentary loading (downbuilding) and subsalt basement faults initiated and localized the flow of the Hormuz Salt and the related salt structures. The resultant diapirs grew by passive diapirism until Late Cretaceous, whereas the pillows became inactive during the Mesozoic after a progressive decline of growth in the Late Palaeozoic. The diapirs and pillows were then subjected to a Palaeocene–Eocene contractional deformation event, which squeezed the diapirs. The consequence was significant salt extrusion, leading to the development of allochthonous salt sheets and wings. Subsequent rise of the Hormuz Salt occurred in wider salt stocks and secondary salt walls by coeval passive diapirism and tectonic shortening since Late Oligocene. Evacuation and diapirism of the Fars Salt was driven mainly by differential sedimentary loading in annular and elongate minibasins overlying the salt and locally by downslope gliding around pre‐existing stocks of the Hormuz Salt. At earlier stages, the Fars Salt flowed not only towards the pre‐existing Hormuz stocks but also away from them to initiate ring‐like salt walls and anticlines around some of the stocks. Subsequently, once primary welds developed around these stocks, the Fars Salt flowed outwards to source the peripheral salt walls. Our results reveal that evolving pre‐existing salt structures from an older source layer have triggered the flow of a younger salt layer and controlled the resulting salt structures. This interaction complicates the flow direction of the younger salt layer, the geometry and spatial distribution of its structures, as well as minibasin depocentre migration through time. Even though dealing with a unique case of two ‘autochthonous’ mobile salt layers, this work may also provide constraints on our understanding of the kinematics of salt flow and diapirism in other salt basins having significant ‘allochthonous’ salt that is coevally affected by deformation of the deeper autochthonous salt layer and related structures.  相似文献   
33.
Concentrated erosion, a major feature of land degradation, represents a serious problem for soil and water resources management and a threat to ecosystems. Understanding the internal mechanisms (de-)coupling sediment pathways can improve the management and resilience of catchments. In this study, concentrated erosion and deposition forms were mapped accurately through field and aerial unmanned aerial vehicle (UAV) campaigns, in order to assess the evolution of connectivity pathways over a series of three contrasted and consecutive flood events occurring between October 2016 and January 2017 (return period ranging from 0.5 to 25 years) in a small Mediterranean agricultural catchment (Can Revull, Mallorca, Spain; 1.4 km2). In addition, a morphometric index of connectivity (IC) was used to identify the potential trajectories of different concentrated erosion forms and deposition areas. IC predictions were calibrated by identifying the optimal critical thresholds, i.e. those most consistent with field observations after each of the events studied. The results found that the index performed well in predicting the occurrence and the length/area of the different type of landforms, giving kappa (κ) coefficients of variation ranging between 0.21 and 0.92 and linear correlations R2 between 0.33 and 0.72. The type of landform affected the correspondence of IC predictions and field observations, with lower thresholds the greater the magnitude of their associated geomorphic processes. Rainfall magnitude proved to be a very important factor controlling the development of erosion and deposition landforms, with large differences in length/area between the contrasted events. The evolution of the observed trajectories revealed feedback dynamics between the structural and functional connectivity of the catchment, in which morphological changes determined the spatial distribution of the processes’ activity in the successive events and vice versa. © 2020 John Wiley & Sons, Ltd.  相似文献   
34.
35.
36.
This paper summarizes the overall benefits supplied by Mediterranean marine biodiversity to human health and highlights the anthropogenic and environmental causes that are threatening these benefits. First, the Mediterranean Sea is a valuable source of seafood, which is an important component of the so-called “Mediterranean diet”. This type of diet has several health benefits, including cardio and cancer protective effects, which are attributed to the high intake of seafood-derived n-3 (omega-3) fatty acids. Second, the Mediterranean marine organisms, particularly the benthic ones, have furnished a large variety of bioactive metabolites, some of which are being developed into new drugs to threat major human diseases such as cancer. Third, the Mediterranean coastal areas provide environments for practising maritime leisure activities that provide physical and psychological benefits to users. Despite all this, fishing, tourism, contamination and sea warming are deteriorating this rich marine ecosystem, which needs to be protected to assure human welfare.  相似文献   
37.
Given their small size, isolation and unpredictability, temporary rockpools present high environmental stress and impoverished communities of species that have adapted to such stressful conditions. Special adaptations of the invertebrates living in these habitats include tolerance to desiccation and fast ontogenetic development in order to maintain stable populations and face high risk of extinction. Dozens of small rockpools (mostly with Ø < 1 m) can be found in east Spain on limestone substrate, where the only known Iberian populations of Heterocypris bosniacaPetkovski et al. (2000), an ostracod species with geographic parthenogenesis, have been recently found. In this survey, two of these rockpools have been monitored during the main hydroperiod between the fall of 2005 and summer 2006 to test the ability of H. bosniaca parthenogenetic populations to face unpredictable hydroperiod dynamics. Pools were visited weekly, and limnological data and ostracod samples were obtained from either water or substrate in dry periods. Ostracod individuals were counted and assigned to growth instars to monitor population changes. In the laboratory, experimental cultures allowed the estimation of survival dependence on the substrate desiccation rate. Throughout the hydrological cycle studied, several hatching periods were observed, usually preceded by desiccation, followed by substrate hydration and water dilution by rain. The demographic changes observed indicate that H. bosniaca populations are able to persist in intermittently inundated environments and produce several generations per annual hydrological cycle. In addition, adult individuals were able to survive in the wet mud of dry pools for longer than five weeks. The experimental data suggest a lower average survival time when exposed to desiccation processes, and that the velocity of substrate water loss is a determining factor for the survival rate of ostracods resisting dry events in temporary ponds. As shown by ostracods’ life histories in temporary aquatic environments undergoing unpredictable desiccation events, a combined strategy of adult tolerance to short periods of water scarcity and rapid hatching from resting egg banks can be advantageous for the monopolization of small-sized ephemeral habitats.  相似文献   
38.
The 23 April 1909 earthquake, with epicentre near Benavente (Portugal), was the largest crustal earthquake in the Iberian Peninsula during the twentieth century (M w = 6.0). Due to its importance, several studies were developed soon after its occurrence, in Portugal and in Spain. A perusal of the different studies on the macroseismic field of this earthquake showed some discrepancies, in particular on the abnormal patterns of the isoseismal curves in Spain. Besides, a complete list of intensity data points for the event is unavailable at present. Seismic moment, focal mechanism and other earthquake parameters obtained from the instrumental records have been recently reviewed and recalculated. Revision of the macroseismic field of this earthquake poses a unique opportunity to study macroseismic propagation and local effects in central Iberian Peninsula. For this reasons, a search to collect new macroseismic data for this earthquake has been carried out, and a re-evaluation of the whole set has been performed and it is presented here. Special attention is paid to the observed low attenuation of the macroseismic effects, heterogeneous propagation and the distortion introduced by local amplifications. Results of this study indicate, in general, an overestimation of the intensity degrees previously assigned to this earthquake in Spain; also it illustrates how difficult it is to assign an intensity degree to a large town, where local effects play an important role, and confirms the low attenuation of seismic propagation inside the Iberian Peninsula from west and southwest to east and northeast.  相似文献   
39.
The use of cement and concrete as fracture grouting or as tunnel seals in a geological disposal facility for radioactive wastes creates potential issues concerning chemical reactivity. From a long-term safety perspective, it is desirable to be able model these interactions and changes quantitatively. The ‘Long-term Cement Studies’ (LCS) project was formulated with an emphasis on in situ field experiments with more realistic boundary conditions and longer time scales compared with former experiments. As part of the project programme, a modelling inter-comparison has been conducted, involving the modelling of two experiments describing cement hydration on one hand and cement-rock reaction on the other, with teams representing the NDA (UK), Posiva (Finland), and JAEA (Japan).This modelling exercise showed that the dominant reaction pathways in the two experiments are fairly well understood and are consistent between the different modelling teams, although significant differences existed amongst the precise parameterisation (e.g. reactive surface areas, dependences of rate upon pH, types of secondary minerals), and in some instances, processes (e.g. partition of alkali elements between solids and liquid during cement hydration; kinetic models of cement hydration). It was not conclusive if certain processes such as surface complexation (preferred by some modellers, but not by others) played a role in the cement-rock experiment or not. These processes appear to be more relevant at early times in the experiment and the evolution at longer timescales was not affected. The observed permeability profile with time could not be matched. The fact that no secondary minerals could be observed and that the precipitated mass calculated during the simulations is minor might suggest that the permeability reduction does not have a chemical origin, although a small amount of precipitates at pore throats could have a large impact on permeability.The modelling exercises showed that there is an interest in keeping the numerical models as simple as possible and trying to obtain a reasonable fit with a minimum of processes, minerals and parameters. However, up-scaling processes and model parameterisation to the timescales appropriate to repository safety assessment are of considerable concern. Future modelling exercises of this type should focus on a suitable natural or industrial analogue that might aid assessing mineral-fluid reactions at these longer timescales.  相似文献   
40.
The short-term movements of a small temperate fish, the annular seabream Diplodus annularis (Linnaeus 1758), were examined using standard tag-recapture and passive acoustic telemetry in Palma Bay (NW Mediterranean), a marine protected area (MPA). The study aimed to provide valuable information for assessing the recreational fishery and its results suggest that MPAs can be used to protect the adult stock of D. annularis. All the fish tagged with standard tags were recaptured near the release locations, with a maximum distance of ∼300 m. The maximum time between release and recapture was 185 d. Two different arrays of acoustic receivers were deployed, one in 2008 and another in 2009, within the MPA. Twenty adults were surgically tagged with acoustic transmitters. Fish monitored in 2008 (n = 12) were translocated from the point of capture to analyse the movement behaviour after artificial displacement. Upon release at displaced locations, 67% of the fish moved towards the original capture location using a time of return that ranged from 0.75 to 15.25 h. Fish monitored in 2009 (n = 8) were released at the point of capture. They showed high site fidelity with a maximum period of 27 d between the first time and the last time they were detected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号