首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   24篇
  国内免费   5篇
测绘学   5篇
大气科学   19篇
地球物理   64篇
地质学   99篇
海洋学   18篇
天文学   30篇
自然地理   36篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   20篇
  2019年   11篇
  2018年   16篇
  2017年   18篇
  2016年   15篇
  2015年   14篇
  2014年   17篇
  2013年   16篇
  2012年   17篇
  2011年   21篇
  2010年   16篇
  2009年   17篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   6篇
  2004年   11篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1985年   1篇
排序方式: 共有271条查询结果,搜索用时 31 毫秒
71.
This study presents the first regional analysis of cirques on Vestfirðir, NW Iceland, using a Geographical Information System (GIS). The length, width, elevation of cirque‐floor, latitude and the distance to the modern coastline (both ocean and fjord coastlines) of cirques were quantified using ArcGIS. The topographical analysis revealed a total of 100 cirques on western and northern Vestfirðir. Several additional cirques are present, but they had poorly defined toewalls, making the cirque‐floor difficult to identify. Mean cirque length is 515 m and mean cirque width is 752 m. The modal orientation of the aspect of cirques is northeast, with a strong secondary mode to the northwest. Cirques at low elevations are more abundant close to the ocean, whereas cirques further from the ocean are present at high elevations. Three techniques were used to reconstruct past equilibrium‐line altitudes (ELAs) of cirque glaciers: the cirque‐floor method, the altitude‐ratio method and the accumulation‐area ratio method. The largest range of past ELAs is generated from the cirque‐floor method with values from 40 up to 730 m. Mean past ELA values range from ~395 to 423 m depending on the method used to reconstruct former ELAs. A strong positive relationship is observed between past ELA values and distance to the ocean demonstrating the importance of access to a moisture source for glacier survival. This relationship is stronger than the relationship between former ELAs and latitude. Based on the small size of cirque glaciers, it is likely that even minor fluctuations in the Irminger Current and the East Greenland Current influence cirque glaciation on Vestfirðir.  相似文献   
72.
73.
74.
Abstract

In this commentary, we highlight some of the strengths of the bibliometric analysis conducted by Qin et al. that examines the relationships between environmental and natural resource sociologies through citation networks, coauthorship, and keyword usage. We also suggest some ways that the analysis could be expanded or built upon, and ideas for further distinct, but related, inquiry. We also reflect on our own identification, training, and mentoring within the two subfields and draw upon responses from a small purposefully selected sample of other early/mid-career environmental and natural resource sociologists to start a conversation about what the relationship between the two fields might look like in the future.  相似文献   
75.
Genovesa Crater Lake is a remote, hypersaline lake in the northern Galápagos archipelago that contains a finely laminated sediment record. This sediment record has the potential to provide a high-resolution history of past climate variability in the eastern tropical Pacific. Here we present modern climate, lake, and sediment observations from 2009 to 2012 to explore how local climate variability influences Genovesa Crater Lake and its sediments. Surface lake temperature is strongly linked to air temperature and is highly seasonal. Temperature stratification is strongest during the warm season, whereas temperature becomes more uniform through the water column in the cool season. Deeper and earlier mixing occurred during the 2010 La Niña, which subsequently delayed 2011 cool season mixing and maximum warm season surface temperatures in 2011 and 2012. Lake salinity changes are influenced by precipitation, evaporation and persistent seawater influx. The largest declines in subsurface salinity follow months after the rainy season, when temperatures cool and fresher surface water from the previous warm/wet season mixes into the subsurface. Between 2009 and 2012, more calcium carbonate precipitated during a period of higher salinity. The period of highest calcium carbonate abundance measured in sediment records that span the late nineteenth to twentieth century coincides with the failure of two consecutive rainy seasons in 1988 and 1989 as well as the coldest monthly sea surface temperature measured at Puerto Ayora in 1989. More calcium carbonate-rich laminae from AD 1550 ± 70 to 1675 ± 90 may indicate a greater frequency of prolonged droughts or cooler temperatures, although enhanced productivity may also modulate carbonate precipitation. More Ca-rich laminae in Genovesa coincide with dry conditions inferred from other Galápagos sediment proxies, as well as prolonged dry and cool conditions inferred from reconstructions of the Southern Oscillation Index and NINO3 sea surface temperatures.  相似文献   
76.
Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi River locations, in 2007-2008. The range of CDOM was 0.092 m−1 at Barataria in June 2008 to 11.225 m−1 at Mississippi in February 2008. An indicator of organic matter quality was predicted by the spectral slope of absorption coefficients from 350 to 412 nm which was between 0.0087 m−1 at Mississippi in May 2008 and 0.0261 m−1 at Barataria in June 2008. CDOM was the dominant component of light attenuation at Terrebonne and Barataria. Detritus and CDOM were the primary components of light attenuation at Vermilion, Atchafalaya, and Mississippi. DOC ranged between 65 and 1235 μM. PIM ranged between 1.1 and 426.3 mg L−1 and POM was between 0.3 and 49.6 mg L−1.  相似文献   
77.
The Wind River Range (WRR) of Wyoming has the largest concentration of alpine glaciers in the American Rockies and contributes to several major river systems in the western United States. Declines in the areal extent and volume of these glaciers are well documented, and eventual loss of alpine glaciers will reduce the amount of water available for agricultural and domestic use. The contribution of glacial melt to streamflow remains largely unquantified in Wyoming. We used isotope measurements and Bayesian modeling to estimate the fractional contribution of glacier meltwater to Dinwoody Creek (DC) in the WRR on bi‐weekly and seasonal (spring, summer, and fall) time scales over 2 years. In 2007 and 2008, we made temporally intensive measurements of the stable isotope composition of water from the DC watershed. Samples of the primary sources of streamflow (snowmelt, glacier melt, rain, and baseflow) were collected during field campaigns, and automated collection of stream samples occurred over the melt season. Isotope data (D and 18O) were analyzed within a hierarchical Bayesian framework that incorporated temporal and spatial correlations. Glacial melt contributed a significant proportion (~53–59%) to streamflow in a low‐flow year (2007) or when streamflow was low during a high‐flow year (2008). In 2008, a large and persistent snowpack contributed significantly (~0·42–51%) to streamflow in mid‐summer. The large contribution of glacial melt to streamflow suggests that the loss of glaciers may impact riparian ecosystems and human water supplies in the late summer and in years with low snowpack. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
78.
Climate Dynamics - North Africa experienced a severe heatwave in April 2010 with daily maximum temperatures ( $$T_{max}$$ ) frequently exceeding $$40\,^{\circ }\mathrm{C}$$ and daily minimum...  相似文献   
79.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   
80.

In a typical winter season, approximately 471,000 tons of road salt are deposited along roadways in Illinois, USA. An estimated 45% of the deposited road salt will infiltrate through the soils and into shallow aquifers. Transported through shallow aquifers, chloride associated with the road salts has the potential to reside within groundwater for years based on the pathway, the geologic material, and the recharge rate of the aquifer system. Utilizing MODFLOW and MT3D, simulations employing various road-salt application rates were conducted to assess the net accumulation of chloride and the residence times of chloride in an agriculture-dominated watershed that originates in an urban area. A positive-linear relationship was observed between the application rate of chloride and both the maximum chloride concentration and total mass accumulated within the watershed. Simulated annual recharge rates along impacted surfaces ranged from 1,000 to 10,000 mg/L. After 60 years of application, simulated chloride concentrations in groundwater ranged from 197 to 1,900 mg/L. For all application rates, chloride concentrations within the groundwater rose at an annual rate of >3 mg/L. While concentrations increase throughout the system, the majority of chloride accumulation occurs near the roads and the urban areas. Model simulations reveal a positive relationship between application rate and residence time of chloride (1,123–1,288 days based on application rate). The models indicate that continued accumulation of chloride in shallow aquifers can be expected, and methods that apply less chloride effectively need to be examined.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号