首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   9篇
  国内免费   7篇
测绘学   4篇
大气科学   19篇
地球物理   73篇
地质学   75篇
海洋学   55篇
天文学   44篇
综合类   6篇
自然地理   27篇
  2024年   1篇
  2021年   2篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   20篇
  2015年   7篇
  2014年   8篇
  2013年   15篇
  2012年   7篇
  2011年   12篇
  2010年   15篇
  2009年   17篇
  2008年   28篇
  2007年   10篇
  2006年   23篇
  2005年   18篇
  2004年   8篇
  2003年   10篇
  2002年   8篇
  2001年   11篇
  2000年   5篇
  1999年   4篇
  1998年   12篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1983年   2篇
  1982年   1篇
  1976年   2篇
排序方式: 共有303条查询结果,搜索用时 15 毫秒
251.
The degree of graphitization of carbonaceous material (CM) has been widely used as an indicator of metamorphic grade. Previous work has demonstrated that peak metamorphic temperature (T) of regional metamorphic rocks can be estimated by an area ratio (R2) of peaks recognized in Raman spectra of CM. The applicability of this method to low‐pressure (<3 kbar) contact metamorphism was tested using Raman spectroscopic analyses of samples from two contact‐metamorphic aureoles in Japan (Daimonji and Kasuga areas). A suitable measurement procedure allows the dependence of the geothermometer on sample type (thin section, chip) and incident angle of laser beam relative to the c‐axes of CM to be tested. Two important general results are: (i) in addition to standard thin sections, chips are also suitable for spectral analysis; and (ii) the incident angle of the laser beam does not significantly affect the temperature estimation, i.e. spectral measurements for the geothermometer can be carried out irrespective of the crystallographic orientation. A laser wavelength of 532 nm was used in this study compared with 514.5 nm in an independent previous study. A comparison shows that the use of a 532‐nm laser results in a slightly, but systematically larger R2 ratio than that of a 514.5‐nm laser. Taking this effect into account, our results show that there is a slight but distinct difference between the R2–T correlations shown by contact and regional metamorphic rocks: the former are slightly better‐crystallized (have slightly lower R2 values) than the latter at the same temperature. This difference is interpreted as due to the degree of associated deformation. Despite the slight difference, the results of this study coincide within the estimated errors of ±50 °C with those of the previously proposed Raman CM geothermometer, thus demonstrating the applicability of this method to contact metamorphism. To facilitate more precise temperature estimates in regions of contact metamorphism, a new calibration for analyses using a 532‐nm laser is derived. Another important observation is that the R2 ratio of metamorphosed CM in pelitic and psammitic rocks is highly heterogeneous with respect to a single sample. To obtain a reliable temperature estimate, the average R2 value must be determined by using a substantial number of measurements (usually N > 50) that adequately reflects the range of sample heterogeneity. Using this procedure (with 532‐nm laser) and adapting our new calibration, the errors of the Raman CM geothermometer for contact metamorphic rocks decrease to ~±30 °C.  相似文献   
252.
Fisheries co-management in the Shiretoko World Natural Heritage area was expanded to ecosystem-based management, in which the fisheries sector plays an essential role in management. A marine management plan was drawn up to define the management objectives, strategies to maintain major species, and methods for ecosystem monitoring. A network of coordinating organizations from a wide range of sectors was established to integrate policy measures. Experience from this case could inform ecosystem-based management in other countries where large numbers of small-scale fishers take a wide range of species under a fisheries co-management regime.  相似文献   
253.
Abstract– The successful return of the Stardust spacecraft provides a unique opportunity to investigate the nature and distribution of organic matter in cometary dust particles collected from comet 81P/Wild 2. Analysis of individual cometary impact tracks in silica aerogel using the technique of two‐step laser mass spectrometry demonstrates the presence of complex aromatic organic matter. While concerns remain as to the organic purity of the aerogel collection medium and the thermal effects associated with hypervelocity capture, the majority of the observed organic species appear indigenous to the impacting particles and are hence of cometary origin. While the aromatic fraction of the total organic matter present is believed to be small, it is notable in that it appears to be N rich. Spectral analysis in combination with instrumental detection sensitivies suggest that N is incorporated predominantly in the form of aromatic nitriles (R–C≡N). While organic species in the Stardust samples do share some similarities with those present in the matrices of carbonaceous chondrites, the closest match is found with stratospherically collected interplanetary dust particles. These findings are consistent with the notion that a fraction of interplanetary dust is of cometary origin. The presence of complex organic N containing species in comets has astrobiological implications as comets are likely to have contributed to the prebiotic chemical inventory of both the Earth and Mars.  相似文献   
254.
We aim at understanding the statistical properties of luminous sub-millimeter (submm) galaxies (SMGs) in the context of cosmological structure formation. By utilizing a cosmological N-body simulation to calculate the distribution of dark halos in the Universe, we consider the dust enrichment in individual halos by Type II supernovae (SNe II). The SN II rate is estimated under a star formation activity which is assumed to occur on a dynamical timescale in the dark matter potential. Our simple framework successfully explains the luminosity function, the typical star formation rate, and the typical dust mass of an observational SMG sample at z~3. We also examine the clustering properties of SMGs, since a positive cross correlation between SMGs and Lyα emitters (LAEs) is indeed observed by a recent observation. In the simulation, we select SMGs by FIR dust luminosity >1012 L , while LAEs are chosen such that the age and the virial mass are consistent with the observed LAE properties. The SMGs and LAEs selected in this way show a spatial cross correlation whose strength is consistent with the observation. This confirms that the SMGs really trace the most clustered regions at z~3 and that their luminosities can be explained by the dust accumulation as a result of their star formation activities. We extend our prediction to higher redshifts, finding that a statistical sample of submm galaxies at z≥6 can be obtained by ALMA with a 100 arcmin2 survey. With the same survey, a few submm galaxies at z~10 may be detected.  相似文献   
255.
Hiroyuki Sato  Kei Kurita 《Icarus》2010,207(1):248-264
Floor-fractured craters (FFC) are a peculiar form of degradation of impact craters defined by the presence of crevice networks and mesas affecting crater floors. They are preferentially distributed near chaotic terrains and outflow channels. The scope of this paper is to present a detailed systematic analysis of FFC at Xanthe Terra. FFC morphologies in this region are classified into five types making a picture of different stages of the same degradation process. FFC are geographically intermixed with un-fractured normal craters (non-FFC). Young craters are less prone to show this type of degradation, as suggested by fresh ejecta layer with preserved crater floor. Size distributions of FFC and non-FFC indicate that larger craters are preferentially fractured. Careful examinations of the crater floor elevations reveal that the crevices often extend deeper than the original crater cavity. Furthermore, an onset depth for the formation of FFC is evidenced from the difference of spatial distributions between FFC and non-FFC. Roof-collapsed depressions observed in the same region have been also documented and their characteristics suggest the removal of subsurface material at depth from about 1200 to 4000 m. These observations taken together suggest a subsurface zone of volume deficit at depth from 1 to 2 km down to several kilometers responsible for FFC formation. Then a scenario of FFC formations is presented in the context of groundwater discharge events at the late Hesperian. This scenario involves two key processes, Earth fissuring and piping erosion, known to occur with rapid groundwater migrations on Earth.  相似文献   
256.
The hydrothermally altered andesite hosting the Hishikari gold-silver vein deposits in southern Kyushu, Japan, is analyzed with respect to the spatial variation in chemical composition. The (CaO + Na2O) content is found to be inversely correlated with the K2O content as it progresses away from the site of mineralization. It was found that analytical data plotted on a (CaO + Na2O) − K2O diagram cannot be explained only by addition of K+ from the hydrothermal solution to the original rock and release of Ca2+ and Na+ from the original rock (K- alteration). Addition of Ca2+ and Na+ from the hydrothermal solution to the rock and release of K+ from the rock but release of K+, Ca2+, and Na+ to the hydrothermal solution (advanced argillic alteration) is important for causing the wide variations in K2O, CaO, and Na2O contents on the (CaO + Na2O) − K2O diagram. These variations can be explained by superimposed potassic, advanced argillic and calcium alterations. The altered rocks in the Honko-Sanjin area, Yamada area, and Masaki area analyzed by this study are characterized by their intermediate K2O content and variable CaO content, high K2O content and low CaO content, and low K2O content and low CaO content, respectively. The K2O, Na2O and CaO contents and oxygen isotopic composition of altered andesite, in conjunction with the solubility of gold as a thio complex, suggest that both gold deposition and the observed compositional variation of altered andesite are the result of mixing between acidic groundwater and neutral gold-bearing hydrothermal solution. The present results indicate that the compositional variation of hydrothermally altered rocks may represent a useful geochemical indicator of epithermal gold–silver mineralization.  相似文献   
257.
In this paper, we investigate spatial variations in soil CO2 efflux and carbon dynamics across five sites located between 65.5°N and 69.0°N in tundra and boreal forest biomes of Alaska. Growing and winter mean CO2 effluxes for the period 2006–2010 were 261 ± 124 (Coefficients of Variation: 48%) and 71 ± 42 (CV: 59%) gCO2/m2, respectively. This indicates that winter CO2 efflux contributed 24% of the annual CO2 efflux over the period of measurement. In tundra and boreal biomes, tussock is an important source of carbon efflux to the atmosphere, and contributes 3.4 times more than other vegetation types. To ensure that representativeness of soil CO2 efflux was determined, 36 sample points were used at each site during the growing season, so that the experimental mean fell within ±20% of the full sample mean at 80% and 90% confidence levels. We found that soil CO2 efflux was directly proportional to the seasonal mean soil temperature, but inversely proportional to the seasonal mean soil moisture level, rather than to the elevation-corrected July air temperature. This suggests that the seasonal mean soil temperature is the dominant control on the latitudinal distribution of soil CO2 efflux in the high-latitude ecosystems of Alaska.  相似文献   
258.
Scorpaena onaria Jordan & Snyder (Scorpaeniformes: Scorpaenidae), previously known only from the northwestern Pacific Ocean, is reported from the southwestern Pacific Ocean for the first time on the basis of 19 specimens. The southwestern Pacific specimens are regarded as a southern population of S. onaria, characterised by a shorter supraocular tentacle and larger body size compared with the northwestern Pacific specimens. The southern population is described in detail including comparisons with all known Indo‐Pacific species of the genus Scorpaena. Analyses of 37 measurements of the southern population of S. onaria found that relative orbit diameter and second anal‐fin spine length became significantly smaller with growth. Initially cycloid, the scales enclosed by the posterior tips of the upper and lower opercular spines and opercular margin change to ctenoid with growth at c. 160–170 mm standard length. A mature female differed from an immature female and males in having a longer upper jaw, steeper dorsal profile of the snout, and shorter nasal spine. As a consequence, the species previously reported as S. neglecta from the Andaman Sea and northwestern Australia was re‐identified as S. onaria.  相似文献   
259.
Abstract– Recent spacecraft missions to comets have reopened a long‐standing debate about the histories and origins of cometary materials. Comets contain mixtures of anhydrous minerals and ices seemingly unaffected by planetary processes, yet there are indications of a hydrated silicate component. We have performed aqueous alteration experiments on anhydrous interplanetary dust particles (IDPs) that likely derived from comets. Hydrated silicates rapidly formed from submicrometer amorphous silicates within the IDPs at room temperature in mildly alkaline solution. Hydrated silicates may thus form in the near‐surface regions of comets if liquid water is ever present. Our findings provide insight into origins of cometary IDPs containing both anhydrous and hydrated minerals and help reconcile the seemingly inconsistent observations of hydrated silicates from the Stardust and Deep Impact missions.  相似文献   
260.
We investigate the far-infrared (FIR) properties of a sample of blue compact dwarf galaxies (BCDs) observed by AKARI . By utilizing the data at wavelengths of  λ= 65  , 90 and 140 μm, we find that the FIR colours of the BCDs are located at the natural high-temperature extension of those of the Milky Way and the Magellanic Clouds. This implies that the optical properties of dust in BCDs are similar to those in the Milky Way. Indeed, we explain the FIR colours by assuming the same grain optical properties, which may be appropriate for amorphous dust grains, and the same size distribution as those adopted for the Milky Way dust. Since both interstellar radiation field and dust optical depth affect the dust temperature, it is difficult to distinguish which of these two physical properties is responsible for the change of FIR colours. Then, in order to examine if the dust optical depth plays an important role in determining the dust temperature, we investigate the correlation between FIR colour (dust temperature) and dust-to-gas ratio. We find that the dust temperature tends to be high as the dust-to-gas ratio decreases but that this trend cannot be explained by the effect of dust optical depth. Rather, it indicates a correlation between dust-to-gas ratio and interstellar radiation field. Although the metallicity may also play a role in this correlation, we suggest that the dust optical depth could regulate the star formation activities, which govern the interstellar radiation field. We also mention the importance of submillimetre data in tracing the emission from highly shielded low-temperature dust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号