首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   17篇
测绘学   2篇
大气科学   31篇
地球物理   59篇
地质学   74篇
海洋学   7篇
天文学   13篇
自然地理   6篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   2篇
  2018年   6篇
  2017年   11篇
  2016年   7篇
  2015年   9篇
  2014年   9篇
  2013年   15篇
  2012年   10篇
  2011年   15篇
  2010年   9篇
  2009年   14篇
  2008年   6篇
  2007年   5篇
  2006年   11篇
  2005年   6篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有192条查询结果,搜索用时 203 毫秒
61.
The interannual variability of African Easterly Waves (AEWs) is assessed with the help of spatio-temporal spectral analysis (STSA) and complex empirical orthogonal functions methods applied to the results of ten-member multiyear ensemble simulations. Two sets of experiments were conducted with the Météo-France ARPEGE-Climat GCM, one with interactive soil moisture (control), and the other with soil moisture relaxed towards climatological monthly means calculated from the control. Composites of Soudano–Sahelian AEWs were constructed and associated physical processes and dynamics were studied in the frame of the waves. It is shown that the model is able to simulate realistically some interannual variability in the AEWs, and that this dynamical aspect of the West African climate is potentially predictable (i.e. signal can be extracted from boundary conditions relatively to internal error of the GCM), especially along the moist Guinean coast. Compared with ECMWF 15-year reanalysis (ERA15), the maximum activity of AEWs is located too far to the South and is somewhat too zonal, but the main characteristics of the waves are well represented. The major impact of soil moisture relaxation in the GCM experiments is to reduce the seasonal potential predictability of AEWs over land by enhancing their internal variability.  相似文献   
62.
A topological representation of a rural catchment is proposed here in addition to the generally used topographic drainage network. This is an object‐oriented representation based on the identification of the inlets and outlets for surface water flow on each farmer's field (or plot) and their respective contributing areas and relationships. It represents the catchment as a set of independent plot outlet trees reaching the stream, while a given plot outlet tree represents the pattern of surface flow relationships between individual plots. In the present study, we propose to implement functions related to linear and surface elements of the landscape, such as hedges or road networks, or land use, to obtain what we call a landscape drainage network which delineates the effective contributing area to the stream, thus characterizing its topological structure. Landscape elements modify flow pathways and/or favour water infiltration, thus reducing the area contributing to the surface yield and modifying the structure of the plot outlet trees. This method is applied to a 4·4‐km2 catchment area comprising 43 955 pixels and 312 plots. While the full set of 164 plot outlet trees, with an average of 7 plots per tree, covers 100% of the total surface area of the catchment, the landscape drainage network comprises no more than 37 plot outlet trees with an average of 2 plots per tree, accounting for 52 and 7% of the catchment surface area, when taking account of linear elements and land use, respectively. This topological representation can be easily adapted to changes in land use and land infrastructure, and provides a simple and functional display for intercomparison of catchments and decision support regarding landscape and water management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
63.
64.
Schoetter  Robert  Cattiaux  Julien  Douville  Hervé 《Climate Dynamics》2015,45(5-6):1601-1616
Climate Dynamics - We investigate heat waves defined as periods of at least 3 consecutive days of extremely high daily maximum temperature affecting at least 30 % of western Europe. This...  相似文献   
65.
A one-dimensional model is used to analyze, at the local scale, the response of the equatorial Atlantic Ocean under different meteorological conditions. The study was performed at the location of three moored buoys of the Pilot Research Moored Array in the Tropical Atlantic located at 10° W, 0° N; 10° W, 6° S; and 10° W, 10° S. During the EGEE-3 (Etude de la circulation océanique et de sa variabilité dans le Golfe de Guinee) campaign of May–June 2006, each buoy was visited for maintenance during 2 days. On board the ship, high-resolution atmospheric parameters were collected, as were profiles of temperature, salinity, and current. These data are used here to initialize, force, and validate a one-dimensional model in order to study the diurnal oceanic mixed-layer variability. It is shown that the diurnal variability of the sea surface temperatures is mainly driven by the solar heat flux. The diurnal response of the near-surface temperatures to daytime heating and nighttime cooling has an amplitude of a few tenths of degree. The computed diurnal heat budget experiences a net warming tendency of 31 and 27 W m−2 at 0° N and 10° S, respectively, and a cooling tendency of 122 W m−2 at 6° S. Both observed and simulated mixed-layer depths experience a jump between the nighttime convection phase and the well-stabilized diurnal water column. Its amplitude changes dramatically depending on the meteorological conditions occurring at the stations and reaches its maximum amplitude (~50 m) at 10° S. At 6° and 10° S, the presence of barrier layers is observed, a feature that is clearer at 10° S. Simulated turbulent kinetic energy (TKE) dissipation rates, compared to independent microstructure measurements, show that the model tracks their diurnal evolution reasonably well. It is also shown that the shear and buoyancy productions and the vertical diffusion of TKE all contribute to the supply of TKE, but the buoyancy production is the main source of TKE during the period of the simulation.  相似文献   
66.
After a few years of research, the observation and the analysis of the deep-seated landslides suggest that these are mainly controlled by tectonic structures, which play a dominant role in the deformation of massif slopes. The La Clapière deep-seated landslide (Argentera Mercantour massif) is embedded in a deep-seated gravitational slope deformation affecting the entire slope, and characterized by specific landforms (trenches, scarps??). Onsite, the tangential displacement direction of the trenches and the scarps are controlled by the tectonic structures. The reactivation of the inherited fault in gravitational faults create a gouge material exposed to an additional mechanical and chemical weathering as well as an increased of leaching. The displacement of these reactivated faults gets increasingly important around the area of the La Clapière landslide and this since 3.6?ka BP. In this study, mechanical analysis and grain size distributions were performed and these data were analysed according to their proximity the La Clapiere landslide and times of initiation of the landslide by 10Be dating. Triaxial test results show that the effective cohesion decreases and the effective angle of internal friction increases from the unweathered area to the weathered area. The whole distribution of the grain size indicates that the further the shear zone is open or developed, the further the residual material loses its finest particles. This paper suggests that the mechanical evolution along the reactivated fault is influenced by the leaching processes. For the first time, we can extract from these data temporal behaviour of the two main mechanical parameters (cohesion and angle of internal friction) from the beginning of the La Clapiere landslide initiation (3.6 ka BP) to now.  相似文献   
67.
On Earth, the Archaean aeon lasted from 4.0 to 2.5 Ga; it corresponds to a relatively stable period. Compared with today, internal Earth heat production was several times greater resulting in high geothermal flux that induced the genesis of rocks such as komatiites and TTG suites, which are no more generated on Earth since 2.5 Ga. Similarly, the details of plate tectonic modalities (plate size, plate motion rate, plate thickness, tectonic style, irregular crustal growth, etc...) were different of modern plate tectonics. Both atmosphere and ocean compositions have been progressively modified and the greater heat production favoured the development of hydrothermalism and therefore created niches potentially favourable for the development of some forms of life. Catastrophic events such as giant meteorite falls or world-sized glaciations drastically and suddenly changed the environment of Earth surface, thus being able to strongly affect development of life. Even if specialists still debate about the age of the oldest indubitable fossil trace of life, Archaean can be considered as having been extremely favourable for life development and diversification.  相似文献   
68.
Wood flux (piece number per time interval) is a key parameter for understanding wood budgeting, determining the controlling factors, and managing flood risk in a river basin. Quantitative wood flux data is critically needed to improve the understanding of wood dynamics and estimate wood discharge in rivers. In this study, the streamside videography technique was applied to detect wood passage and measure instantaneous rates of wood transport. The goal was to better understand how wood flux responds to flood and wind events and then predict wood flux. In total, one exceptional wind and seven flood events were monitored on the Ain River, France, and around 24,000 wood pieces were detected visually. It is confirmed that, in general, there is a threshold of wood motion in the river equal to 60% of bankfull discharge. However, in a flood following a windy day, no obvious threshold for wood motion was observed, which confirms that wind is important for the preparation of wood for transport between floods. In two multi-peak floods, around two-thirds of the total amount of wood was delivered on the first peak, which confirms the importance of the time between floods for predicting wood fluxes. Moreover, we found an empirical relation between wood frequency and wood discharge, which is used to estimate the total wood amount produced by each of the floods. The data set is then used to develop a random forest regression model to predict wood frequency as a function of three input variables that are derived from the flow hydrograph. The model calculates the total wood volume either during day or night based on the video monitoring technique for the first time, which expands its utility for wood budgeting in a watershed. A one-to-one link is then established between the fraction of detected pieces of wood and the dimensionless parameter “passing time × frame rate ”, which provides a general guideline for the design of monitoring stations.  相似文献   
69.
Abstract

This study was conducted as part of the European LIFE Loire Nature program for the conservation and management of a 110-km-long section of the Loire and Allier rivers, an area renowned for its ecological richness. The methodological approach is based on statistical analysis (bivariate and multivariate analyses) of hydro-geomorphologic and biogeographical variables, complemented by reach typology and mapping. The main results show, on the one hand, the great spatial variability of fluvial mosaic complexity along the river continuum and on the other hand, some independence between the riparian forest characteristics and the channel forms. The fluvial pattern (e.g. anabranching) and the forest establishment along the Loire river register specific features. © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   
70.
Understanding the thermal regime of rivers is a key issue for predicting ecosystem change in the context of global warming. However, water temperature is not only influenced by air temperature. To better highlight relative contribution of factors controlling water temperature, we used satellite thermal infrared (TIR) images from Landsat ETM+ to investigate longitudinal and temporal variations in thermal patterns of the French Rh?ne River. Because satellite TIR remote sensing is limited to large rivers, we used an automated water extraction technique to remove pixels contaminated by terrestrial surfaces. We calculated water surface temperatures of the 500?km long reach for 83 dates between 1999 and 2009. The average accuracy and uncertainty of our data, ±1.1 and ±0.4°C for reaches with more than 3?pixels across and ±1.4 and ±0.5°C for reaches with one to 3?pixels across, are comparable to other satellite TIR studies of rivers. Our results confirmed previous studies on the thermal impacts of tributaries and nuclear power plants on the Rh?ne, providing an understanding of their seasonal pattern and their longitudinal impact. We showed temperature differences of 0?C2°C within the largest hydroelectric bypass facilities between the bypass section and the canal, with Montélimar and Caderousse showing the most pronounced differences. Discussion points concern the potential impacts of tributaries and nuclear power plants on the spatio-temporal thermal patterns, as well as the factors responsible for thermal differences in the bypass facilities: length and minimum flow of the bypass section, and tributaries coming into this reach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号