首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  国内免费   1篇
大气科学   8篇
地球物理   6篇
地质学   33篇
海洋学   3篇
天文学   3篇
  2018年   2篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1967年   1篇
  1965年   1篇
  1962年   1篇
  1958年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
51.
The solar wind at larger distances is known to be a multicomponent plasma. The different components, solar ions, pick-up ions, and anomalous ions, are without collisional coupling but they are all coupled to the intrinsic wave turbulences by nonlinear wave-particle interactions. Since quite a long time it is not understood why dynamical processes associated with the loading of the primary solar wind by secondary pick-up ions neither lead to a recognizable heating nor to a deceleration of the solar wind at larger distances. While the inefficient heating seems to be explained by the fact that pick-up ions do not assimilate quickly enough to the solar wind distribution function, the unobservable deceleration of the distant solar wind always remained mysterious. Different from all theoretical approaches up to now, here we intend to show that the wave-induced pick-up ion pressure has to be introduced into the equations of motion in an adequate non-polytropic form to correctly describe the multicomponent plasma dynamics. If this is done it becomes clear that the deceleration of the solar wind is considerably reduced or even vanishing.  相似文献   
52.
Quartz crystals from topaz–zinnwaldite–albite granites from Zinnwald (Erzgebirge, Germany) contain, in addition to primary and secondary fluid inclusions (FIs), abundant crystalline silicate-melt inclusions (MIs) with diameters up to 200 m. These MIs represent various stages of evolution of a highly evolved melt system that finally gave rise to granite-related Sn–W mineralization. The combination of special experimental techniques with confocal laser Raman-microprobe spectroscopy and EMPA permits precise measurement of elevated contents of H2O, F, and B in re-homogenized MIs. The contents of H2O and F were observed to increase from 3 to 30 and 1.9 to 6.4 wt%, respectively, during magma differentiation. However, there is a second MI group, very rich in H2O, with values up to 55 wt% H2O and an F concentration of approximately 3 wt%. Ongoing enrichment of volatiles H2O, F, B, and Cl and of Cs and Rb can be explained in terms of magma differentiation triggered by fractional crystallization and thus, is suggested to reflect elemental abundances in natural magmas, and not boundary-layer melts. Partitioning between melt and cogenetic fluids has further modified the magmatic concentrations of some elements, particularly Sn. The coexistence of two types of MIs with primary FIs indicates fluid saturation early in the history of magma crystallization, connected with a continuous sequestration of Sn, F, and B. The results of this study provide additional evidence for the extraordinary importance of the interplay of H2O, F, and B in the enrichment of Sn during magma differentiation by decreasing the viscosity of and increasing the diffusivity in the melts as well as by the formation of various stable fluoride complexes in the melt and coexisting fluid.
Rainer ThomasEmail: Phone: +49-331-2881474
  相似文献   
53.
In a series of timed experiments, monazite inclusions are induced to form in the Durango fluorapatite using 1 and 2 N HCl and H2SO4 solutions at temperatures of 300, 600, and 900°C and pressures of 500 and 1,000 MPa. The monazite inclusions form only in reacted areas, i.e. depleted in (Y+REE)+Si+Na+S+Cl. In the HCl experiments, the reaction front between the reacted and unreacted regions is sharp, whereas in the H2SO4 experiments it ranges from sharp to diffuse. In the 1 N HCl experiments, Ostwald ripening of the monazite inclusions took place both as a function of increased reaction time as well as increased temperature and pressure. Monazite growth was more sluggish in the H2SO4 experiments. Transmission electron microscopic (TEM) investigation of foils cut across the reaction boundary in a fluorapatite from the 1 N HCl experiment (600°C and 500 MPa) indicate that the reacted region along the reaction front is characterized by numerous, sub-parallel, 10–20 nm diameter nano-channels. TEM investigation of foils cut from a reacted region in a fluorapatite from the 1 N H2SO4 experiment at 900°C and 1,000 MPa indicates a pervasive nano-porosity, with the monazite inclusions being in direct contact with the surrounding fluorapatite. For either set of experiments, reacted areas in the fluorapatite are interpreted as replacement reactions, which proceed via a moving interface or reaction front associated with what is essentially a simultaneous dissolution–reprecipitation process. The formation of a micro- and nano-porosity in the metasomatised regions of the fluorapatite allows fluids to permeate the reacted areas. This permits rapid mass transfer in the form of fluid-aided diffusion of cations to and from the growing monazite inclusions. Nano-channels and nano-pores also serve as sites for nucleation and the subsequent growth of the monazite inclusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号