首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   8篇
  国内免费   3篇
测绘学   3篇
大气科学   25篇
地球物理   35篇
地质学   84篇
海洋学   9篇
天文学   2篇
自然地理   5篇
  2022年   8篇
  2021年   7篇
  2020年   8篇
  2019年   3篇
  2018年   19篇
  2017年   17篇
  2016年   20篇
  2015年   7篇
  2014年   10篇
  2013年   18篇
  2012年   7篇
  2011年   4篇
  2010年   8篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2006年   6篇
  2005年   1篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1978年   1篇
排序方式: 共有163条查询结果,搜索用时 790 毫秒
71.
72.
73.
This paper describes two case studies of demand-side water management in the Okanagan region of southern British Columbia, Canada. The case studies reveal important lessons about how local context shapes the process of adaptation; in these cases, adaptation to rising and changing water demand under a regime of increasingly limited supply in a semi-arid region. Both case studies represent examples of water meter implementation, specifically volume-based pricing in a residential area and as a compliance tool in a mainly farming district. While the initiative was successful in the residential setting, agricultural metering met with stiff resistance. These cases suggest many factors shape the character of the adaptation process, including: interpretation of the signal relative to context, newness of the approach, consumer values, and local and provincial political agendas. Although context has been explored in resource management circles, thus far climate change adaptation research has not adequately discussed the embeddedness of adaptation. In other words, how context matters and what aspects of context, unrelated to climate change, could encourage or thwart the act of adapting. This study is a simple illustration of the potential drivers, barriers and enabling factors that have influenced the adaptation process of water management decisions in the Okanagan.  相似文献   
74.
The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the weaknesses of the classic training algorithms, such as trapping in local optima, poor performance in networks with large parameters, over-fitting, and etc. In this study, some evolutionary algorithms, including genetic algorithm (GA), ant colony optimization for continuous domain (ACOR), and particle swarm optimization (PSO), have been used to train adaptive neuro-fuzzy inference system (ANFIS) in order to predict river flow. For this purpose, classic and hybrid ANFIS models were trained using river flow data obtained from upstream stations to predict 1-, 3-, 5-, and 7-day ahead river flow of downstream station. The best inputs were selected using correlation coefficient and a sensitivity analysis test (cosine amplitude). The results showed that PSO improved the performance of classic ANFIS in all the periods such that the averages of coefficient of determination, R2, root mean square error, RMSE (m3/s), mean absolute relative error, MARE, and Nash-Sutcliffe efficiency coefficient (NSE) were improved up to 0.19, 0.30, 43.8, and 0.13%, respectively. Classic ANFIS was only capable to predict river flow in 1-day ahead while EA improved this ability to 5-day ahead. Cosine amplitude method was recognized as an appropriate sensitivity analysis method in order to select the best inputs.  相似文献   
75.
Efficient heat exploitation strategies from geothermal systems demand for accurate and efficient simulation of coupled flow-heat equations on large-scale heterogeneous fractured formations. While the accuracy depends on honouring high-resolution discrete fractures and rock heterogeneities, specially avoiding excessive upscaled quantities, the efficiency can be maintained if scalable model-reduction computational frameworks are developed. Addressing both aspects, this work presents a multiscale formulation for geothermal reservoirs. To this end, the nonlinear time-dependent (transient) multiscale coarse-scale system is obtained, for both pressure and temperature unknowns, based on elliptic locally solved basis functions. These basis functions account for fine-scale heterogeneity and discrete fractures, leading to accurate and efficient simulation strategies. The flow-heat coupling is treated in a sequential implicit loop, where in each stage, the multiscale stage is complemented by an ILU(0) smoother stage to guarantee convergence to any desired accuracy. Numerical results are presented in 2D to systematically analyze the multiscale approximate solutions compared with the fine scale ones for many challenging cases, including the outcrop-based geological fractured field. These results show that the developed multiscale formulation casts a promising framework for the real-field enhanced geothermal formations.  相似文献   
76.
Natural Hazards - Several studies have been conducted on droughts, precipitation, and temperature, whereas none have addressed the underlying relationship between nonlinear dynamic properties and...  相似文献   
77.
Fathipour-Azar  Hadi 《Acta Geotechnica》2022,17(4):1327-1341
Acta Geotechnica - Shear constitutive models of rock discontinuities have been viewed as an effective stability evaluation tool in the rock mass engineering application area. This paper proposes a...  相似文献   
78.
Fathipour-Azar  Hadi 《Acta Geotechnica》2022,17(4):1207-1217
Acta Geotechnica - Particle-based discrete element modeling is commonly used in the numerical analysis of geomaterials. However, for the construction of such models, micromechanical parameters...  相似文献   
79.
The Shalair area, which is located in northeastern Iraq, is considered to be part of the northern Sanandaj-Sirjan Zone (SaSZ) and contains several granitoid bodies. One of these bodies, the Mishao porphyritic-granite (MG), was crystallized at 111.6?±?2.4 Ma, based on its zircon U-Pb age. Its geochemical characteristics suggest that the MG rocks are calc-alkaline, peraluminous, I-type granites with microgranular mafic enclaves. They are enriched in SiO2, Na2O, Al2O3 and Zr and depleted in MgO, Fe2O3, Nb and Ti; in contrast, the enclave sample records lower SiO2 content and higher contents of MgO and Fe2O3. These rocks show an enrichment of LREE relative to HREE, and pronounced negative Eu anomalies implying feldspar fractionation. The isotopic and geochemical characteristics of the MG samples suggest that these rocks are evolved through fractional crystallization. In the La/Nb-Nb diagram and Sm/Nd ratios, the MG rocks and the enclave samples exhibit strong evidence for crustal contamination. The MG rocks record high initial 87Sr/86Sr (0.70625–0.70740) and low 143Nd/144Nd(i) (0.51235–0.51274) ratios. These Sr-Nd isotopic data, combined with the presence of high Th/U and Rb/Sr ratios and significant depletions of Nb, Ta and Ti, show a relation of these bodies to an active continental margin regime. Based on the age and geochemical data of the MG, this study presents new information about the occurrence of Middle Cretaceous magmatic activities, which are related to the active continental margins in the SaSZ that run parallel to the Zagros Fold-Thrust Belt.  相似文献   
80.
The Roshtkhar area is located in the Khaf-Kashmar-Bardaskan volcano-plutonic belt to the northeastern Iran along the regional E–W trending Dorouneh Fault, northeastern of the Lut Block. There are several outcrops of subvolcanic rocks occurring mainly as dikes in the area, which intruded into Cenozoic intrusive rocks. We present U–Pb dating of zircons from a diabase dike and syenite rock using LA-ICP-MS that yielded an age of 1778 ± 10 Ma for the dike, indicating this Cenozoic dike has zircon xenocrysts inherited from deeper sources; and 38.0 ± 0.5 Ma, indicating an Late Eocene crystallization age for the syenite. Geochemically, the dikes typical of high-K calc-alkaline to shoshonitic magmas. Petrographic observations and major and trace element variations suggest that diabase melts underwent variable fractionation of clinopyroxene, olivine, and Fe-Ti oxides and minor crustal contamination during the differentiation process. Primitive mantle-normalized multi-element diagrams display enrichment in LILE, such as Rb, Ba, Th, U, and Sr compared to HFSE, as well as negative anomalies of Nb, Ta, P, and Ti, suggesting derivation from subduction-modified mantle. Chondrite-normalized REE plots show moderately LREE enriched patterns (<3.83 LaN/YbN <8.27), and no significant Eu anomalies. Geochemical modelling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of batch melting (~1–3%) of a phlogopite-spinel peridotite source to generate the mafic dikes. The geochemical signatures suggest that the Roshtkhar mafic dikes cannot be related directly to subduction and likely resulted from melting of upper mantle in an extensional setting where the heat flow was provided from deeper levels. These dikes presumably derived the zircon xenocrysts from the assimilation of upper crust of Gondwanian basement. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in NE Iran was triggered by heating due to asthenospheric upwelling in an extensional setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号