首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   518篇
  免费   23篇
  国内免费   6篇
测绘学   19篇
大气科学   40篇
地球物理   130篇
地质学   199篇
海洋学   42篇
天文学   71篇
综合类   6篇
自然地理   40篇
  2022年   8篇
  2021年   8篇
  2020年   11篇
  2019年   3篇
  2018年   18篇
  2017年   8篇
  2016年   16篇
  2015年   15篇
  2014年   22篇
  2013年   30篇
  2012年   10篇
  2011年   28篇
  2010年   22篇
  2009年   27篇
  2008年   19篇
  2007年   23篇
  2006年   27篇
  2005年   11篇
  2004年   14篇
  2003年   23篇
  2002年   19篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1988年   5篇
  1987年   3篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1975年   9篇
  1974年   5篇
  1973年   8篇
  1972年   4篇
  1970年   6篇
  1966年   4篇
  1954年   3篇
排序方式: 共有547条查询结果,搜索用时 15 毫秒
541.
It is widely recognized nowadays that there are at least two different phases of bedload sediment transport in gravel‐bed rivers. However, the transition between these phases is still poorly or subjectively defined, especially at bends in rivers, where cross‐stream sediment transport can strongly influence changes in the texture of the transported sediment. In this paper, we use piecewise models to identify objectively, at two points in the cross‐section of a river bend, the discharge at which the transition between bedload transport phases occurs. Piecewise models were applied to a new bedload data set collected during a wide range of discharges while analysing the associated changes in sediment texture. Results allowed the identification of two well‐differentiated phases of sediment transport (phase I and phase II), with a breakpoint located around bankfull discharge. Associated with each phase there was a change in bedload texture. In phase I there was non‐dominance in the transport of fine or coarse fractions at a particular sampling point; but in phase II bedload texture was strongly linked to the position of the sampling point across the channel. In this phase, fine particles tended to be transported to the inner bank, while coarse sizes were transferred throughout the middle parts of the channel. Moreover, bedload texture at the inner sampling point became bimodal while the transport of pebble‐sized particles was increasing in the central parts of the river channel. It is suggested that this general pattern may be related both to secondary currents, which transfer finer particles from the outer to the inner bank, and to the progressive dismantling of the riverbed surface layer. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
542.
A theoretical thermal evolution model of Mars is constructed, utilizing as constraints the available geophysical and geological data, including those provided by the Viking missions. The calculation includes conduction and subsolidus mantle convection. Calculated models indicate that Martian evolution can be roughly characterized by four different stages. (1) Core formation and crust differentiation: this stage starts from the planet formation to about 1 by thereafter. During this period, Martian core is separated and the initial crust is differentiated. (2) Heating, expansion, and mantle differentiation: this stage begins after the core separation and extends to about 3 by. First, mantle temperatures rise and reach partial melting. Between 2 and 3 by, extensive melting, differentiation, and outgassing occur. Planetary radius increases and extensional features observed at the surface are most likely generated at this stage. (3) Mature phase: after 3 by, the planet reaches maturity. Between 3 and 4 by slow and sustained evolution continues. Lithosphere thickens and partial melt zone deepens. (4) Cooling period: this stage represents the last phase of Martian history. The planet is cooling slowly. The partial melting zone shrinks and volcanic activity tapers off. At present, Martian lithosphere is about 200 km thick and the mantle is convecting slowly. The models suggest that the core is molten, and the calculated surface heat flux is 35 erg cm?2 sec?1.  相似文献   
543.
Early marine diagenetic dolomite is a rather thermodynamically-stable carbonate phase and has potential to act as an archive of marine porewater properties. However, the variety of early to late diagenetic dolomite phases that can coexist within a single sample can result in extensive complexity. Here, the archive potential of early marine dolomites exposed to extreme post-depositional processes is tested using various types of analyses, including: petrography, fluid inclusion data, stable δ13C and δ18O isotopes, 87Sr/86Sr ratios, and U-Pb age dating of various dolomite phases. In this example, a Triassic carbonate platform was dissected and overprinted (diagenetic temperatures of 50 to 430°C) in a strike-slip zone in Southern Spain. Eight episodes of dolomitization, a dolostone cataclasite and late stage meteoric/vadose cementation were recognized. The following processes were found to be diagenetically relevant: (i) protolith deposition and fabric-preservation, and marine dolomitization of precursor aragonite and calcite during the Middle–Late Triassic; (ii) intermediate burial and formation of zebra saddle dolomite and precipitation of various dolomite cements in a Proto-Atlantic opening stress regime (T ca 250°C) during the Early–Middle Jurassic; (iii) dolomite cement precipitation during early Alpine tectonism, rapid burial to ca 15 km, and high-grade anchizone overprint during Alpine tectonic evolution in the Early Eocene to Early Miocene; (iv) brecciation of dolostones to cataclasite during the onset of the Carboneras Fault Zone activity during the Middle Miocene; and (v) late-stage regression and subsequent meteoric overprint. Data shown here document that, under favourable conditions, early diagenetic marine dolomites and their archive data may resist petrographic and geochemical resetting over time intervals of 108 or more years. Evidence for this preservation includes preserved Late Triassic seawater δ13CDIC values and primary fluid inclusion data. Data also indicate that oversimplified statements based on bulk data from other petrographically-complex dolomite archives must be considered with caution.  相似文献   
544.
In the tropical mountains of Southeast Asia, slash-and-burn (S/B) agriculture is a widely practiced and important food production system. The ecosystem carbon stock in this land-use is linked not only to the carbon exchange with the atmosphere but also with food and resource security. The objective of this study was to provide quantitative information on the land-use and ecosystem carbon stock in the region as well as to infer the impacts of alternative land-use and ecosystem management scenarios on the carbon sequestration potential at a regional scale. The study area was selected in a typical slash-and-burn region in the northern part of Laos. The chrono-sequential changes of land-use such as the relative areas of community age and cropping (C) + fallow (F) patterns were derived from the analysis of time-series satellite images. The chrono-sequential analysis showed that a consistent increase of S/B area during the past three decades and a rapid increase after 1990. Approximately 37% of the whole area was with the community age of 1–5 years, whereas 10% for 6–10 years in 2004. The ecosystem carbon stock at a regional scale was estimated by synthesizing the land-use patterns and semi-empirical carbon stock model derived from in situ measurements where the community age was used as a clue to the linkage. The ecosystem carbon stock in the region was strongly affected by the land-use patterns; the temporal average of carbon stock in 1C + 10F cycles, for example, was greater by 33 MgC ha−1 compared to that in 1C + 2F land-use pattern. The amount of carbon lost from the regional ecosystems during 1990–2004 periods was estimated to be 42 MgC ha−1. The study approach proved to be useful especially in such regions with low data-availability and accessibility. This study revealed the dynamic change of land-use and ecosystem carbon stock in the tropical mountain of Laos as affected by land-use. Results suggest the significant potential of carbon sequestration through changing land-use and ecosystem management scenarios. These quantitative estimates would be useful to better understand and manage the land-use and ecosystem carbon stock towards higher sustainability and food security in similar ecosystems.  相似文献   
545.
A calcitic stalagmite collected from a limestone cave in the Buchan area of eastern Victoria has been dated by three mass-spectrometric uranium series analyses. Two growth phases are represented: the older from 13.4 to 10.6 ka and the younger from 3.2 to 2.1 ka. Oxygen isotope analysis reveals that temperatures were below present-day values at all times, but particularly cool conditions are indicated between 12.3 and 11.4 ka, and Neoglacial conditions occurred at about 3 ka. The older cold climate event is clearly synchronous with the Younger Dryas in Europe and this is the first time that strong evidence for this event has been found in Australia. Carbon isotope variations are interpreted as indicating changes in plant productivity on the surface and are most likely controlled by variations in summer rainfall. They indicate particularly high levels of plant productivity from 11.5 to 11.0 ka. © 1996 John Wiley & Sons, Ltd.  相似文献   
546.
FOREWORD     
  相似文献   
547.
Marine biogenic emission of dimethylsulfi de(DMS)has been well recognized as the main natural source of reduced sulfur to the remote marine atmosphere and has the potential to aff ect climate,especially in the polar regions.We used a global climate model(GCM)to investigate the impact on atmospheric chemistry from a change to the contemporary DMS fl ux to that which has been projected for the late 21 st century.The perturbed simulation corresponded to conditions that pertained to a tripling of equivalent CO 2,which was estimated to occur by year 2090 based on current worst-case greenhouse gas emission scenarios.The changes in zonal mean DMS fl ux were applied to 50°S–70°S Antarctic(ANT)and 65°N–80°N Arctic(ARC)regions.The results indicate that there are clearly diff erent impacts after perturbation in the southern and northern polar regions.Most quantities related to the sulfur cycle show a higher increase in ANT.However,most sulfur compounds have higher peaks in ARC.The perturbation in DMS fl ux leads to an increase of atmospheric DMS of about 45%in ANT and 33.6%in ARC.The sulfur dioxide(SO 2)vertical integral increases around 43%in ANT and 7.5%in ARC.Sulfate(SO 4)vertical integral increases by 17%in ANT and increases around 6%in ARC.Sulfur emissions increases by 21%in ANT and increases by 9.7%in ARC.However,oxidation of DMS by OH increases by 38.2%in ARC and by 15.17%in ANT.Aerosol optical depth(AOD)increases by 4%in the ARC and by 17.5%in the ANT,and increases by 22.8%in austral summer.The importance of the perturbation of the biogenic source to future aerosol burden in polar regions leads to a cooling in surface temperature of 1 K in the ANT and 0.8 K in the ARC.Generally,polar regions in the Antarctic Ocean will have a higher off setting eff ect on warming after DMS fl ux perturbation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号