首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   729篇
  免费   29篇
  国内免费   10篇
测绘学   15篇
大气科学   42篇
地球物理   132篇
地质学   303篇
海洋学   72篇
天文学   107篇
综合类   2篇
自然地理   95篇
  2022年   4篇
  2020年   8篇
  2019年   7篇
  2018年   19篇
  2017年   12篇
  2016年   29篇
  2015年   13篇
  2014年   22篇
  2013年   35篇
  2012年   15篇
  2011年   32篇
  2010年   27篇
  2009年   29篇
  2008年   35篇
  2007年   32篇
  2006年   26篇
  2005年   25篇
  2004年   18篇
  2003年   35篇
  2002年   23篇
  2001年   26篇
  2000年   17篇
  1999年   12篇
  1998年   21篇
  1997年   13篇
  1996年   14篇
  1995年   7篇
  1994年   13篇
  1993年   11篇
  1992年   12篇
  1991年   13篇
  1990年   11篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   17篇
  1983年   9篇
  1982年   13篇
  1981年   11篇
  1980年   6篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1975年   6篇
  1974年   6篇
  1973年   9篇
  1970年   3篇
排序方式: 共有768条查询结果,搜索用时 15 毫秒
111.
112.
113.
114.
The Menderes Massif, in western Anatolia, has been described as a lithological succession comprising a basal ‘Precambrian gneissic core of sedimentary origin’ overlain in sequence by ‘Palaeozoic schist’ and ‘Mesozoic-Cenozoic marble’ forming the envelope. The boundary between core and schist envelope was interpreted as a major unconformity, the ‘Supra-Pan-African unconformity’. By contrast, our field observations and geochemical data show that around the southern side of Besparmak Mountain, north of Selimiye (Milas), the protoliths of highly deformed, mylonitized augen gneisses are granitoid rocks intrusive into the adjacent Palaeozoic metasedimentary schists. The field relationships indicate the age of intrusion to be younger than late Permian and there is no evidence for the existence of either an exposed Precambrian basement or the ‘Supra-Pan-African unconformity’ in this sector of the Menderes Massif.  相似文献   
115.
Precise microprobe determinations of minor elements in olivine from Marjalahti show averages of 0.067% CaO; 0.0211% Cr2O3; less than 0.0045% TiO2; 0.288% MnO; and 30 ppm Ni. The calcium is as high as in some terrestrial plutonic olivines (e.g. Stillwater) but lower than in terrestrial nodule (high-temperature mantle?) olivines, consistent with very slow cooling to low temperatures. The chromium is discrepant with some earlier determinations, and possibly chromium is zoned in most pallasitic olivines. The Ti, Mn, and Ni data are consistent with previous determinations.  相似文献   
116.
In the wake of the report of the World Health Organisation's Commission on the Social Determinants of Health, Closing the gap in a generation (Marmot 2008), this invited commentary considers the scope for geographical research on global health. We reflect on current work and note future possibilities, particularly those that take a critical perspective on the interplay of globalisation, security and health.  相似文献   
117.
Climate change is expected to bring potentially significant changes to Washington State’s natural, institutional, cultural, and economic landscape. Addressing climate change impacts will require a sustained commitment to integrating climate information into the day-to-day governance and management of infrastructure, programs, and services that may be affected by climate change. This paper discusses fundamental concepts for planning for climate change and identifies options for adapting to the climate impacts evaluated in the Washington Climate Change Impacts Assessment. Additionally, the paper highlights potential avenues for increasing flexibility in the policies and regulations used to govern human and natural systems in Washington.  相似文献   
118.
To better understand the implications of anthropogenic climate change for three major Mid-Atlantic estuaries (the Chesapeake Bay, the Delaware Bay, and the Hudson River Estuary), we analyzed the regional output of seven global climate models. The simulation given by the average of the models was generally superior to individual models, which differed dramatically in their ability to simulate twentieth-century climate. The model average had little bias in its mean temperature and precipitation and, except in the Lower Chesapeake Watershed, was able to capture the twentieth-century temperature trend. Weaknesses in the model average were too much seasonality in temperature and precipitation, a shift in precipitation’s summer maximum to spring and winter minimum to fall, interannual variability that was too high in temperature and too low in precipitation, and inability to capture the twentieth-century precipitation increase. There is some evidence that model deficiencies are related to land surface parameterizations. All models warmed over the twenty-first century under the six greenhouse gas scenarios considered, with an increase of 4.7 ± 2.0°C (model mean ± 1 standard deviation) for the A2 scenario (a medium-high emission scenario) over the Chesapeake Bay Watershed by 2070–2099. Precipitation projections had much weaker consensus, with a corresponding increase of 3 ± 12% for the A2 scenario, but in winter there was a more consistent increase of 8 ± 7%. The projected climate averaged over the four best-performing models was significantly cooler and wetter than the projected seven-model-average climate. Precipitation projections were within the range of interannual variability but temperature projections were not. The implied research needs are for improvements in precipitation projections and a better understanding of the impacts of warming on streamflow and estuarine ecology and biogeochemistry.  相似文献   
119.
Subcalcic, high-Cr (G10) garnets are found as inclusions within diamonds and in peridotitic xenoliths. The strong spatial associations between G10 garnets and diamond make them an important tool in the investigation of diamond genesis. We present an integrated study of the major and trace element composition and oxygen-Sr-Nd-Hf isotopic ratios of eight G10 garnets from the Ekati mine (NWT-Canada) and four from the Murowa mine (Zimbabwe) in an attempt to determine their petrogenetic evolution and to further examine a possible relationship between the metasomatic agents responsible for G10 garnet signatures and diamond forming fluids.All garnets display sinusoidal to mildly sinusoidal REE patterns and have negative Ti, Sr and positive U anomalies. They have variably radiogenic 87Sr/86Sr (0.703261-0.731191) and non-radiogenic εNd values (−8.1 to −27.1), except for one sample from Murowa that has a positive εNd of 2.5. One Ekati sample has an extremely low εHf value of −61.6. The Ekati garnets we have studied all appear to come from a single depth in the Slave lithospheric mantle. On the base of Cr-Ca relations they have crystallized at 4.9 GPa and display dunitic Ca intercept values. Their δ18O values range between +5.23‰ and +5.42‰.The Ekati G10 garnets record a complex, multi-stage metasomatic history involving the interaction of several components during their genesis. One metasomatic agent was enriched in HFSE, LREE, Sr, and depleted in Nb. This agent had the least radiogenic Sr. Another metasomatic agent had highly radiogenic Sr, and was enriched in LREE, Sr, Nb, Th and U.The G10 garnets have very low εNd and εHf values combined with radiogenic Sr, thus, they require an early lithospheric mantle enrichment event at some stage during their genesis or during the evolution of any precursor material that they formed from. The only Hf isotope composition measurable from the Ekati suite is so unradiogenic (εHf = −61) that it yields a Lu/Hf model age of 3521 Ma. This indicates that the lithospheric enrichment event seen by the Ekati garnets or their precursors may have occurred in the early stages of the craton stabilization, during the diamond forming event [Westerlund K., Shirey S., Richardson S., Carlson R., Gurney J. and Harris J. (2006) A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re-Os isotope systematics. Contrib. Mineral. Petrol.152(3), 275-294]. Although our data cannot unequivocally discriminate between a variety of models for the genesis of subcalcic garnets it is clear that the host peridotite originated via melting at shallow depths followed by subduction and that the observed geochemical fingerprint of the garnets is strongly influenced by diamond forming fluids. Diamond forming fluids sampled from fibrous diamonds, have steep REE patterns, negative Ti and Sr anomalies and very low Sm/Nd ratios that are very similar to G10 garnet characteristics. These diamond forming fluids have been recently shown to have extreme Sr and Nd isotopic compositions [Klein-BenDavid O., Pearson D. G., Nowell G. M. and Cantigny P. (2008) Origins of diamond forming fluids—constraints from a coupled Sr-Nd isotope and trace element approach. Extended abstracts to the 9th International Kimberlite Conference, Frankfurt, Germany, 9IKC-A-00118.] that are closely concordant with G10 garnets. The fluids are also rich in LREE, P, K and water, sharing these features with mica-rich metasomes. These similarities suggest that ancient lithospheric metasomes could either provide a source region for, or be a product of diamond forming fluids. Diamond forming fluids appear to be intimately involved in the evolution of G10 garnets in the lithospheric mantle, either acting as a metasomatic agent, or being integral to triggering or enhancing garnet growth in a Cr-rich protolith. Such a link explains the strong association between G10 garnets and diamonds.  相似文献   
120.
Evidence for ocean acidification in the Great Barrier Reef of Australia   总被引:1,自引:0,他引:1  
Geochemical records preserved in the long-lived carbonate skeleton of corals provide one of the few means to reconstruct changes in seawater pH since the commencement of the industrial era. This information is important in not only determining the response of the surface oceans to ocean acidification from enhanced uptake of CO2, but also to better understand the effects of ocean acidification on carbonate secreting organisms such as corals, whose ability to calcify is highly pH dependent. Here we report an ∼200 year δ11B isotopic record, extracted from a long-lived Porites coral from the central Great Barrier Reef of Australia. This record covering the period from 1800 to 2004 was sampled at yearly increments from 1940 to the present and 5-year increments prior to 1940. The δ11B isotopic compositions reflect variations in seawater pH, and the δ13C changes in the carbon composition of surface water due to fossil fuel burning over this period. In addition complementary Ba/Ca, δ18O and Mg/Ca data was obtained providing proxies for terrestrial runoff, salinity and temperature changes over the past 200 years in this region. Positive thermal ionization mass spectrometry (PTIMS) method was utilized in order to enable the highest precision and most accurate measurements of δ11B values. The internal precision and reproducibility for δ11B of our measurements are better than ±0.2‰ (2σ), which translates to a precision of better than ±0.02 pH units. Our results indicate that the long-term pre-industrial variation of seawater pH in this region is partially related to the decadal-interdecadal variability of atmospheric and oceanic anomalies in the Pacific. In the periods around 1940 and 1998 there are also rapid oscillations in δ11B compositions equivalent changes in pH of almost 0.5 U. The 1998 oscillation is co-incident with a major coral bleaching event indicating the sensitivity of skeletal δ11B compositions to loss of zooxanthellate symbionts. Importantly, from the 1940s to the present-day, there is a general overall trend of ocean acidification with pH decreasing by about 0.2-0.3 U, the range being dependent on the value assumed for the fractionation factor α(B3-B4) of the boric acid and borate species in seawater. Correlations of δ11B with δ13C during this interval indicate that the increasing trend towards ocean acidification over the past 60 years in this region is the result of enhanced dissolution of CO2 in surface waters from the rapidly increasing levels of atmospheric CO2, mainly from fossil fuel burning. This suggests that the increased levels of anthropogenic CO2 in atmosphere has already caused a significant trend towards acidification in the oceans during the past decades. Observations of surprisingly large decreases in pH across important carbonate producing regions, such as the Great Barrier Reef of Australia, raise serious concerns about the impact of Greenhouse gas emissions on coral calcification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号