首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5476篇
  免费   562篇
  国内免费   161篇
测绘学   240篇
大气科学   629篇
地球物理   2065篇
地质学   2181篇
海洋学   281篇
天文学   359篇
综合类   185篇
自然地理   259篇
  2022年   9篇
  2021年   14篇
  2020年   10篇
  2019年   15篇
  2018年   443篇
  2017年   376篇
  2016年   260篇
  2015年   159篇
  2014年   125篇
  2013年   136篇
  2012年   658篇
  2011年   431篇
  2010年   132篇
  2009年   147篇
  2008年   136篇
  2007年   125篇
  2006年   141篇
  2005年   833篇
  2004年   882篇
  2003年   655篇
  2002年   175篇
  2001年   71篇
  2000年   45篇
  1999年   17篇
  1998年   9篇
  1997年   31篇
  1996年   11篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   12篇
  1990年   11篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   3篇
  1985年   8篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1973年   3篇
  1965年   3篇
  1954年   3篇
排序方式: 共有6199条查询结果,搜索用时 15 毫秒
991.
Changes in magmatic assemblages and crystal stability as a response of CO2-flushing in basaltic systems have rarely been directly addressed experimentally, making the role of CO2 in magma dynamics still controversial and object of scientific debate. We conducted a series of experiments to understand the response of magmas from Etna volcano to CO2 flushing. We performed a first experiment at 300 MPa to synthesize a starting material composed of crystals of some hundreds of µm and melt pools. This material is representative of an initial magmatic assemblage composed of plagioclase, clinopyroxene and a water-undersaturated melt with 1.6 wt% H2O. In a second step, the initial assemblage was equilibrated at 300 and 100 MPa with fluids having different XCO 2 fl (CO2/(H2O + CO2)). At low XCO 2 fl (< 0.2 to 0.4), plagioclase is completely dissolved and clinopyroxene show dissolution textures. For relatively high XCO 2 fl (0.9 at 300 MPa), the flushing of a CO2-rich fluid phase leads to an increase of the amount of clinopyroxene and a decrease of the abundance of plagioclase at 300 MPa. This decrease of plagioclase proportion is associated with a change in An content. Our experiments demonstrate that flushing basaltic systems with fluids may drastically affect crystal textures and phase equilibria depending on proportions of H2O and CO2 in the fluid phase. Since texture and crystal proportions are among the most important parameters governing the rheology of magmas, fluid flushing will also influence magma ascent to the Earth’s surface. The experimental results open new perspectives to decipher the textural and compositional record of minerals observed in volcanic rocks from Mt. Etna, and at the same time offer the basis for interpreting the information preserved in minerals from other basaltic volcanoes erupting magmas enriched in CO2.  相似文献   
992.
The 2.7–3 Ma Ertsberg East Skarn System (Indonesia), adjacent to the giant Grasberg Porphyry Copper deposit, is part of the world’s largest system of CuAu skarn deposits. Published fluid inclusion and stable isotope data show that it formed through the flux of magma-derived fluid through contact metamorphosed carbonate rock sequences at temperatures well above 600° C and pressures of less than 50 MPa. Under these conditions, the fluid has very low density and the properties of a gas. Combining a range of micro-analytical techniques, high-resolution QEMSCAN mineral mapping and computer-assisted X-ray micro-tomography, an array of coupled gas–solid reactions may be identified that controlled reactive mass transfer through the ~ 1 km3 hydrothermal skarn system. Vacancy-driven mineral chemisorption reactions are identified as a new type of reactive transport process for high-temperature skarn alteration. These gas–solid reactions are maintained by the interaction of unsatisfied bonds on mineral surfaces and dipolar gas-phase reactants such as SO2 and HCl that are continuously supplied through open fractures and intergranular diffusion. Principal reactions are (a) incongruent dissolution of almandine-grossular to andradite and anorthite (an alteration mineral not previously recognized at Ertsberg), and (b) sulfation of anorthite to anhydrite. These sulfation reactions also generate reduced sulfur with consequent co-deposition of metal sulfides. Diopside undergoes similar reactions with deposition of Fe-enriched pyroxene in crypto-veins and vein selvedges. The loss of calcium from contact metamorphic garnet to form vein anhydrite necessarily results in Fe-enrichment of wallrock, and does not require Fe-addition from a vein fluid as is commonly assumed.  相似文献   
993.
St. Kitts lies in the northern Lesser Antilles, a subduction-related intraoceanic volcanic arc known for its magmatic diversity and unusually abundant cognate xenoliths. We combine the geochemistry of xenoliths, melt inclusions and lavas with high pressure–temperature experiments to explore magma differentiation processes beneath St. Kitts. Lavas range from basalt to rhyolite, with predominant andesites and basaltic andesites. Xenoliths, dominated by calcic plagioclase and amphibole, typically in reaction relationship with pyroxenes and olivine, can be divided into plutonic and cumulate varieties based on mineral textures and compositions. Cumulate varieties, formed primarily by the accumulation of liquidus phases, comprise ensembles that represent instantaneous solid compositions from one or more magma batches; plutonic varieties have mineralogy and textures consistent with protracted solidification of magmatic mush. Mineral chemistry in lavas and xenoliths is subtly different. For example, plagioclase with unusually high anorthite content (An≤100) occurs in some plutonic xenoliths, whereas the most calcic plagioclase in cumulate xenoliths and lavas are An97 and An95, respectively. Fluid-saturated, equilibrium crystallisation experiments were performed on a St. Kitts basaltic andesite, with three different fluid compositions (XH2O = 1.0, 0.66 and 0.33) at 2.4 kbar, 950–1025 °C, and fO2 = NNO ? 0.6 to NNO + 1.2 log units. Experiments reproduce lava liquid lines of descent and many xenolith assemblages, but fail to match xenolith and lava phenocryst mineral compositions, notably the very An-rich plagioclase. The strong positive correlation between experimentally determined plagioclase-melt KdCa–Na and dissolved H2O in the melt, together with the occurrence of Al-rich mafic lavas, suggests that parental magmas were water-rich (> 9 wt% H2O) basaltic andesites that crystallised over a wide pressure range (1.5–6 kbar). Comparison of experimental and natural (lava, xenolith) mafic mineral composition reveals that whereas olivine in lavas is predominantly primocrysts precipitated at low-pressure, pyroxenes and spinel are predominantly xenocrysts formed by disaggregation of plutonic mushes. Overall, St. Kitts xenoliths and lavas testify to mid-crustal differentiation of low-MgO basalt and basaltic andesite magmas within a trans-crustal, magmatic mush system. Lower crustal ultramafic cumulates that relate parental low-MgO basalts to primary, mantle -derived melts are absent on St. Kitts.  相似文献   
994.
Nucleation and growth of crystals, and the resulting crystal size distribution, play a fundamental role in controlling the physical properties of magmas and consequently the dynamics of the eruptions. In the past decades, laboratory experiments demonstrated that size and shape of crystals strongly control the physical properties of magma and lava. Additionally, natural and experimental samples are usually characterized in terms of their crystal size distribution to link it with physical processes that are not directly observable, such as cooling or decompression mechanisms. In this paper, we present CrystalMoM, a new predictive model, based on the quadrature-based method of moments, developed for studying the kinetic of crystallization in volcanic systems. The quadrature-based method of moments, well established in the field of chemical engineering, represents a mesoscale modelling approach that rigorously simulates the space–time evolution of a distribution of particles, by considering its moments. The method is applied here, for the first time, for studying the equilibrium/disequilibrium crystallization in magma, modelling the temporal evolution of the moments of a crystal size distribution. The model, verified against numerical and experimental data, represents a valuable tool to infer the cooling and decompression rates from the crystal size distribution observed in natural samples.  相似文献   
995.
Subduction of serpentinised mantle transfers oxidised and hydrated mantle lithosphere into the Earth, with consequences for the oxidation state of sub-arc mantle and the genesis of arc-related ore deposits. The role of subducted serpentinised mantle lithosphere in earth system processes is uncertain because subduction fluxes are poorly constrained. Most subducted serpentinised mantle is serpentinised on the ocean floor settings. Yet this material is poorly represented in the literature because it is difficult to access. Large volumes of accessible serpentinite are available in ophiolite complexes, and most interpretations of subduction fluxes associated with ultramafic rocks are based on ophiolite studies. Seafloor and ophiolite serpentinisation can occur under different conditions, so it is necessary to assess if ophiolite serpentinites are a good proxy for seafloor serpentinites. Serpentinites sampled during ODP cruise 209 were compared with serpentinites from New Caledonia. The ODP209 serpentinites were serpentinised by modified seawater in a shallow hydrothermal seafloor setting. The New Caledonia serpentinites were serpentinised in a mantle wedge setting by slab-derived fluids, with possible contributions from oceanic serpentinisation and post-obduction serpentinisation. Petrological, whole rock and mineralogical analyses were combined to compare the two sample sets. Petrologically, the evolution of serpentinisation was close to identical in the two environments. However, more oxidised iron, Cl, S and C is present in serpentine from the ODP209 serpentinites relative to the New Caledonia serpentinites. Given these observations, the use of serpentinites from different geodynamic settings as a proxy for abyssal serpentinites from spreading settings must be undertaken with caution.  相似文献   
996.
Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U–Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning ~800 million years. In several instances, SHRIMP U–Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U–Th–Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U–Th–Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span ~80 million years was emplaced in less than half that time (1688–1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over ~70 million years was instead assembled over ~130 million years and outlasted associated regional metamorphism by ~100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide.  相似文献   
997.
Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5–7.5 GPa and 1200–1450?°C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite–carbonatite–phlogopite sandwiches and harzburgite–carbonatite mixtures consisting of Ol?+?Grt?+?Cpx?+?L (±Opx), according to the previous experimental results obtained at the same PT parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200–1350?°C, as well as at 6.3–7.0 GPa and 1200?°C: 2Phl?+?CaCO3 (L)?Cpx?+?Ol?+?Grt?+?K2CO3 (L)?+?2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200–1350?°C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate–silicate melts in a?≥?150?°C region between 1200 and 1350?°C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3–7.0 GPa and 1200?°C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180–195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350?°C in a phlogopite-bearing peridotite source generating a hydrous carbonate–silicate melt with 10–15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450?°C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca#?=?35–40.  相似文献   
998.
Most igneous charnockites are interpreted to have crystallized at hot and dry conditions, i.e. at >800?°C and <3 wt.% H2O and with an important CO2 component in the system. These charnockites are metaluminous to weakly peraluminous and their formation involves a significant mantle-derived component. This study, in contrast, investigates the crystallization conditions of strongly peraluminous, metasediment-sourced charnockites from the Qinzhou Bay Granitic Complex, South China. To constrain the temperature-melt H2O crystallization paths for the studied peraluminous charnockites, petrographic characterization was combined with fluid inclusion compositional data, mineral thermometry, and thermodynamic modelling. The uncertainties of the thermodynamic modelling in reconstructing the crystallization conditions of the granitic magmas have been evaluated by comparison between modelled and experimental phase relations for a moderately evolved, peraluminous granite (~70 wt.% SiO2). The comparison suggests that the modelling reproduces the experimentally derived phase saturation boundaries with uncertainties of 20–60?°C and 0.5–1 wt.% H2O for systems with ≤1–2 wt.% initial melt H2O at ~0.2 GPa. For the investigated natural systems, the thermometric estimates and modelling indicate that orthopyroxene crystallized at relatively low temperature (750–790?±?30?°C) and moderately high to high melt H2O content (3.5–5.6?±?0.5 wt.%). The charnockites finally solidified at relatively “cold” and “wet” conditions. This suggests that thermodynamic modelling affords a possible approach to constrain charnockite crystallization as tested here for peraluminous, moderately low pressure (≤0.3 GPa), and overall H2O-poor systems (≤1–2 wt.% H2O total), but yields results with increasing uncertainty for high-pressure or H2O-rich granitic systems.  相似文献   
999.
Wang et al. (Contrib Mineral Petrol 171:62, 2016a) present data on composition of xenolith from Southern Tibet and conclude that ulrapotassic melts from the region formed by melting mantle, and complex interaction with a crustal component. In this discussion we demonstrate that numerous observations presented by Wang et al. (2016a) can be explained by partial melting of crust followed by interaction between that melt and the mantle. We show that this model can explain the variability of magmas in such suits without evoking occurrence of coincidental, unrelated events. Moreover we demonstrate that our model of a crustal origin of the proto-shoshonite melts is now supported by independent lines of evidence such as geochemistry of restites after high- and ultrahigh- pressure melting and melt inclusion studies.  相似文献   
1000.
Mafic enclaves in the 1991–1995 dacite of Unzen volcano show chemical and textural variability, such as bulk SiO2 contents ranging from 52 to 62 wt% and fine- to coarse-grained microlite textures. In this paper, we investigated the mineral chemistry of plagioclase and hornblende microlites and distinguished three enclave types. Type-I mafic enclaves contain high-Mg plagioclase and low-Cl hornblende as microlites, whereas type-III enclaves include low-Mg plagioclase and high-Cl hornblende. Type-II enclaves have an intermediate mineral chemistry. Type-I mafic enclaves tend to show a finer-grained matrix, have slightly higher bulk rock SiO2 contents (56–60 wt%) when compared with the type-III mafic enclaves (SiO2?=?53–59 wt%), but the overall bulk enclave compositions are within the trend of the basalt–dacite eruptive products of Quaternary monogenetic volcanoes around Unzen volcano. The origin of the variation of mineral chemistry in mafic enclaves is interpreted to reflect different degree of diffusion-controlled re-equilibration of minerals in a low-temperature mushy dacitic magma reservoir. Mafic enclaves with a long residence time in the dacitic magma reservoir, whose constituent minerals were annealed at low-temperature to be in equililbrium with the rhyolitic melt, represent type-III enclaves. In contrast, type-I mafic enclaves result from recent mafic injections with a mineral assemblage that still retains the high-temperature mineral chemistry. Taking temperature, Ca/(Ca?+?Na) ratio of plagioclase, and water activity of the hydrous Unzen magma into account, the Mg contents of plagioclase indicate that plagioclase microlites in type-III enclaves initially crystallized at high temperature and were subsequently re-equilibrated at low-temperature conditions. Compositional profiles of Mg in plagioclase suggest that older mafic enclaves (Type-III) had a residence time of ~100 years at 800 °C in a stagnant magma reservoir before their incorporation into the mixed dacite of the 1991–1995 Unzen eruption. Presence of different types of mafic enclaves suggests that the 1991–1995 dacite of Unzen volcano tapped mushy magma reservoir intermittently replenished by high-temperature mafic magmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号