首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   25篇
  国内免费   6篇
测绘学   1篇
大气科学   49篇
地球物理   138篇
地质学   170篇
海洋学   23篇
天文学   96篇
综合类   1篇
自然地理   35篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   11篇
  2014年   14篇
  2013年   23篇
  2012年   16篇
  2011年   18篇
  2010年   16篇
  2009年   20篇
  2008年   17篇
  2007年   14篇
  2006年   22篇
  2005年   17篇
  2004年   19篇
  2003年   18篇
  2002年   14篇
  2001年   14篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   10篇
  1995年   10篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1985年   7篇
  1984年   10篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1979年   9篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1973年   12篇
  1972年   3篇
  1934年   3篇
排序方式: 共有513条查询结果,搜索用时 15 毫秒
511.
The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low‐flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin‐wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed‐parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin‐wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.  相似文献   
512.
513.
The thermal histories of Himalayan leucogranites provide critical information for unravelling the post-collisional geodynamics of the Himalayas. The Ramba Dome is located at the intersection of the Tethyan Himalayan leucogranite belt with the Yadong–Gulu Rift and hosts several generations of granitic intrusions. Of these intrusions, the 8-Ma two-mica granites and garnet leucogranite dykes are the youngest of Himalayan leucogranites. In this study, we focus on the carbonaceous staurolite schist located ~1.3 km from the intrusion to constrain the thermal history of the aureole that marked the cessation of leucogranite magmatism. The schist contains euhedral garnet and staurolite porphyroblasts in a foliated matrix of muscovite + biotite + chlorite + plagioclase + quartz + graphite. The staurolite shows minor compositional variations from the inclusion-free core to the inclusion-rich rim. By contrast, the garnet features a distinctive bell-shaped Mn profile and increasing Mg# from the garnet core to rims. In a graphite-bearing equilibrium phase diagram for a modified bulk composition with garnet cores removed, the garnet rim composition suggests a peak temperature of ~550°C, consistent with an independent thermometer based on the Raman spectra of carbonaceous materials (RSCM; 548 ± 9°C). The P–T condition lies within the narrow low-variance field bracketed by the staurolite-in and chlorite-out boundaries, indicating minimal overstepping of staurolite nucleation and growth. On the other hand, the garnet core composition indicates 520°C at 2.5 kbar, about 40°C higher than the predicted garnet-in boundary (~480°C). This apparent temperature overstep corresponds to a small chemical affinity (<5 kJ/mol 12 O) for garnet nucleation, comparable to previous estimates. The sharp boundaries of the high-Ca sector zoning in the core indicate limited diffusion modification (~1.5 Ma if at the peak temperature). The short thermal pulse involves advective heat transfer by leucogranite emplacement, followed by rapid cooling toward the end of Himalayan magmatism and rapid exhumation likely facilitated by the Yadong–Gulu Rift.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号