首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32067篇
  免费   1011篇
  国内免费   471篇
测绘学   981篇
大气科学   2533篇
地球物理   7205篇
地质学   11428篇
海洋学   2702篇
天文学   6869篇
综合类   239篇
自然地理   1592篇
  2021年   217篇
  2020年   249篇
  2019年   310篇
  2018年   1286篇
  2017年   1175篇
  2016年   1032篇
  2015年   600篇
  2014年   841篇
  2013年   1445篇
  2012年   1474篇
  2011年   1486篇
  2010年   1089篇
  2009年   1401篇
  2008年   1266篇
  2007年   1278篇
  2006年   1271篇
  2005年   1852篇
  2004年   2026篇
  2003年   1592篇
  2002年   905篇
  2001年   699篇
  2000年   686篇
  1999年   584篇
  1998年   560篇
  1997年   544篇
  1996年   413篇
  1995年   403篇
  1994年   413篇
  1993年   318篇
  1992年   314篇
  1991年   268篇
  1990年   314篇
  1989年   270篇
  1988年   249篇
  1987年   286篇
  1986年   230篇
  1985年   320篇
  1984年   344篇
  1983年   337篇
  1982年   312篇
  1981年   254篇
  1980年   276篇
  1979年   222篇
  1978年   213篇
  1977年   221篇
  1976年   186篇
  1975年   203篇
  1974年   179篇
  1973年   178篇
  1972年   118篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
991.
Garnet‐bearing ultramafic rocks including clinopyroxenite, wehrlite and websterite locally crop out in the Higashi‐akaishi peridotite of the Besshi region in the Cretaceous Sanbagawa metamorphic belt. These rock types occur within dunite as lenses, boudins or layers with a thickness ranging from a few centimetres to 1 metre. The wide and systematic variation of bulk‐rock composition and the overall layered structure imply that the ultramafic complex originated as a cumulate sequence. Garnet and other major silicates contain rare inclusions of edenitic amphibole, chlorite and magnetite, implying equilibrium at relatively low P–T conditions during prograde metamorphism. Orthopyroxene coexisting with garnet shows bell‐shaped Al zoning with a continuous decrease of Al from the core towards the rim, consistent with rims recording peak metamorphic conditions. Estimated P–T conditions using core and rim compositions of orthopyroxene are 1.5–2.4 GPa/700–800 °C and 2.9–3.8 GPa/700–810 °C, respectively, implying a high P/T gradient (> 3.1 GPa/100 °C) during prograde metamorphism. The presence of relatively low P–T conditions at an early stage of metamorphism and the steep P/T gradient together trace a concave upwards P–T path that shows increasing P/T with higher T, similar to P–T paths reported from other UHP metamorphic terranes. These results suggest either (1) down dragging of hydrated mantle cumulate parallel to the slab–wedge interface in the subduction zone by mechanical coupling with the subducting slab or (2) ocean floor metamorphism and/or serpentinization at early stage of subduction of oceanic lithosphere and ensuing HP–UHP prograde metamorphism.  相似文献   
992.
Zircon fission track dating and track length analysis in the high‐grade part of the Asemigawa region of the Sanbagawa belt demonstrates a simple cooling history passing through the partial annealing zone at 63.2 ± 5.8 (2 σ) Ma. Combining this age with previous results of phengite and amphibole K–Ar and 40Ar/39Ar dating gives a cooling rate of between 6 and 13 °C Myr?1, which can be converted to a maximum exhumation rate of 0.7 mm year?1 using the known shape of the P–T path. This is an order of magnitude lower than the early part of the exhumation history. In contrast, zircon fission track analyses in the low‐grade Oboke region show that this area has undergone a complex thermal history probably related to post‐orogenic secondary reheating younger than c. 30 Ma. This event may correlate with the widespread igneous activity in south‐west Japan around 15 Ma. The age of subduction‐related metamorphism in the Oboke area is probably considerably older than the generally accepted range of 77–70 Ma.  相似文献   
993.
In the Sikkim region of north‐east India, the Main Central Thrust (MCT) juxtaposes high‐grade gneisses of the Greater Himalayan Crystallines over lower‐grade slates, phyllites and schists of the Lesser Himalaya Formation. Inverted metamorphism characterizes rocks that immediately underlie the thrust, and the large‐scale South Tibet Detachment System (STDS) bounds the northern side of the Greater Himalayan Crystallines. In situ Th–Pb monazite ages indicate that the MCT shear zone in the Sikkim region was active at c. 22, 14–15 and 12–10 Ma, whereas zircon and monazite ages from a slightly deformed horizon of a High Himalayan leucogranite within the STDS suggest normal slip activity at c. 17 and 14–15 Ma. Although average monazite ages decrease towards structurally lower levels of the MCT shear zone, individual results do not follow a progressive younging pattern. Lesser Himalaya sample KBP1062A records monazite crystallization from 11.5 ± 0.2 to 12.2 ± 0.1 Ma and peak conditions of 610 ± 25 °C and 7.5 ± 0.5 kbar, whereas, in the MCT shear zone rock CHG14103, monazite crystallized from 13.8 ± 0.5 to 11.9 ± 0.3 Ma at lower grade conditions of 525 ± 25 °C and 6 ± 1 kbar. The P–T–t results indicate that the shear zone experienced a complicated slip history, and have implications for the understanding of mid‐crustal extrusion and the role of out‐of‐sequence thrusts in convergent plate tectonic settings.  相似文献   
994.
Quantitative PT path determination in metamorphic rocks is commonly based on the variation in composition of growth‐zoned garnet. However, some component of growth zoning in garnet is necessarily the result of an effective bulk composition change within the rock that has been generated by crystal fractionation of components into the core of garnet. Therefore, any quantitative calculation of the PT regime of garnet growth should be completed using an accurate assessment of the composition of the chemical system from which garnet is growing. Consequently, a method for calculating the extent of crystal fractionation that provides a means of estimating the composition of the unfractionated rock at any stage during garnet growth is developed. The method presented here applies a Rayleigh fractionation model based on measured Mn content of garnet to generate composition v. modal proportion curves for garnet, and uses those curves to estimate the vectors of crystal fractionation. The technique is tested by calculating the precision of the equilibrium between three garnet compositional variables within the chemical system determined to be appropriate for each of a series of microprobe analyses from garnet. Application of the fractionation calculations in conjunction with the PT estimates based on intersecting compositional isopleths provides a means of calculating PT conditions of garnet growth that is based on individual point‐analyses on a garnet grain. Such spatially precise and easily obtainable PT data allow for detailed parallel studies of the microstructural, the PT, and the chemical evolution of metamorphosed pelites. This method provides a means of studying the dynamics of orogenic systems at a resolution that was previously unattainable.  相似文献   
995.
The Qinglongshan eclogites in the Southern Sulu ultrahigh pressure metamorphic (UHPM) terrane show very different retrograded textures from their counterparts in the Northern Sulu terrane, implying a different thermal history. Scanning electron and optical microscope observations indicate that the peak assemblage of the Qinglongshan eclogite is anhydrous, composed of Grt + OmpI + Rt + (Ky + coesite). These primary minerals were replaced by second and third stage minerals, resulting in symplectite pseudomorphs or coronas. The following relationships are inferred: OmpI → OmpII + Ab + Fe‐oxide symplectite (type I) and Rt → Rt + Ilm intergrowth; and, Ky → Pg, OmpII (+Pl) → Amp (+Pl) symplectite (type II), and Grt → Prg (+Fe‐oxide). Mineral chemistry and mass‐balance demonstrate that the pseudomorphed textures were developed by metasomatism involving dissolution and precipitation intensified by fluids along grain boundaries. The formation of symplectite type I produced Fe, Mg and Na but consumed Ca and Si. The Mg and Fe diffused to garnet where exchange of (Mg, Fe) with Ca of the garnet resulted in compositional zonation with decreased Ca towards the edge of garnet grains where Ca was consumed during symplectite formation. The replacement of kyanite by paragonite consumed the extra Na. In the later stage, fluid infiltration partially transformed symplectite type I to type II, and narrow rims of pargasite resorbed garnet from their boundaries. Mass balance suggests that the transformation and resorption would have been coupled during fluid infiltration. In the latest stage, epidote and quartz were precipitated at very late stage as a result of fluid activity along microfractures. Tentative P–T conditions based on mineral reactions and thermocalc software suggest that the retrograded eclogite did not record the granulite facies retrograde evolution characteristic of eclogites from the Northern Sulu terrane. The difference in retrograde evolution between the Southern and Northern Sulu eclogites suggests a different exhumation history.  相似文献   
996.
This paper presents relative secular variations of the total intensity of the geomagnetic field against a background of results of magnetic anomaly interpretation along seismic profile P4. Profile P4 crosses a Variscan folding zone in the Paleozoic Platform (PLZ), the Trans-European Suture Zone (TESZ), and the Polish part of the East European Craton (EEC). Secular geomagnetic field variations measured in 1966–2000 along a line adjacent to seismic profile P4 were analysed. The study of secular variations, reduced to the base recordings at the Belsk Magnetic Observatory, showed that the growth of geomagnetic field at the East European Craton was slower than in the Trans-European Suture Zone and the Paleozoic Platform.A 2D crustal magnetic model was interpreted as a result of magnetic modelling, in which seismic, geological and geothermal data were also used. The modelling showed that there were significant differences in the magnetic model for geotectonic units, which had been earlier determined based on deep seismic survey data. It should be noted that a fundamental change of trend of the relative secular variations was observed at the slope of the Precambrian Platform. After analysing the geomagnetic field observed along profile P4, the hypothesis that the contact between Phanerozoic and Precambrian Europe lies in Poland's territory can be proven.  相似文献   
997.
The elemental (concentration of organic carbon, atomic H/C and C/N ratios), isotopic (δ13C values of organic matter) and molecular (predominant n-alkane chain length and carbon preference index (CPI)) organic components were measured for 600 samples taken from a 107-m long core from the Padul Basin (Andalusia, Spain). The record runs from the Lower Pleistocene (ca. 1 Ma B.P.) to the mid-Holocene (ca. 4.5 ka B.P.) with, in general, little diagenesis (removal of components). Two markedly different hydrogeological scenarios were interpreted: (1) From ca. 1 Ma to ca. 400 ka B.P. run-off recharge was significant and water depths were greater (lacustrine scenario). From ca. 400 to 4.5 ka B.P., the Padul Basin became a peat bog s.s. with the major water input coming from groundwater inflow. From ca. 400 to ca. 180 ka B.P. alternating episodes with either predominant grasses, trees or aquatic macrophytes which were linked to wet/dry phases, took place. An important deglaciation episode has been interpreted to occur between ca. 180 and 170 ka B.P. The global climatic changes occurring from ca. 170 to 25 ka B.P. were not recorded in the proxies, though they do show important variations linked to the Last Glacial Maximum and the beginning of the Holocene (ca. 25–10 ka B.P.): (2) Cold phases coexisting with dry periods produced the recession of forests and the development of grasses. After these periods, as both temperature and precipitation increased, forests expanded and the water level, linked to thaw, rose, especially at ca. 20 ka B.P. Few changes occurred during the Holocene, although there were short alternations between wet and dry episodes. Overall, the techniques applied proved to be excellent palaeoenvironmental proxies for studying the basin’s palaeoclimatological and palaeohydrological evolution.  相似文献   
998.
A rare metachert pebble containing amphibole grains with microboudin structures in a wide range of orientations provides an opportunity to perform stress analysis in two orthogonal orientations on the foliation surface. The sample was analysed by the microboudin method to infer the triaxial stress state during microboudinage. Stress parameters proportional to the far-field differential stress were determined for sodic amphibole grains in the two orientations. The ratio of the stresses in the two orthogonal orientations (σ1σ2)/(σ1σ3) was calculated to be 0.64, indicating that σ2 lies closer to the midpoint between σ1 and σ3 than to σ3.  相似文献   
999.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   
1000.
Primary economic diamond deposit modelling has rarely been documented in the public domain. This paper presents information collected from significantly diamondiferous kimberlite pipes located near Lac de Gras in the Arctic region of Canada's Northwest Territories. The resource estimation process is widely accepted as a cyclical iteration of data collection and evaluation processes. A resource database is typically assembled from a large inventory of exploration data. These data must be methodically quality checked before accepting the information for interpretive analysis. The foundation of a mineral resource model is based on clear understanding of the geology model along with subsidiary grade, volume, and density models. Defining these models is an iterative process of statistical analyses and interpretation. As a deposit progresses along a path towards development, reducing risk to acceptable levels is critical for identifying and realizing its maximum value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号