首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1692篇
  免费   47篇
  国内免费   23篇
测绘学   53篇
大气科学   164篇
地球物理   314篇
地质学   657篇
海洋学   130篇
天文学   288篇
综合类   11篇
自然地理   145篇
  2023年   9篇
  2021年   17篇
  2020年   17篇
  2019年   17篇
  2018年   36篇
  2017年   28篇
  2016年   43篇
  2015年   25篇
  2014年   45篇
  2013年   79篇
  2012年   54篇
  2011年   78篇
  2010年   78篇
  2009年   122篇
  2008年   80篇
  2007年   99篇
  2006年   78篇
  2005年   91篇
  2004年   58篇
  2003年   49篇
  2002年   56篇
  2001年   43篇
  2000年   41篇
  1999年   32篇
  1998年   30篇
  1997年   23篇
  1996年   21篇
  1995年   22篇
  1994年   23篇
  1993年   18篇
  1992年   18篇
  1991年   19篇
  1990年   16篇
  1988年   14篇
  1986年   12篇
  1985年   16篇
  1984年   12篇
  1983年   21篇
  1982年   16篇
  1981年   17篇
  1980年   14篇
  1979年   11篇
  1978年   14篇
  1977年   12篇
  1976年   16篇
  1975年   8篇
  1973年   16篇
  1972年   16篇
  1971年   10篇
  1970年   9篇
排序方式: 共有1762条查询结果,搜索用时 63 毫秒
71.
Recent hydro‐climatological trends and variability characteristics were investigated for the Lake Naivasha basin with the aim of understanding the changes in water balance components and their evolution over the past 50 years. Using a Bayesian change point analysis and modified Mann–Kendall tests, time series of annual mean, maximum, minimum, and seasonal precipitation and flow, as well as annual mean lake volumes, were analysed for the period 1960–2010 to uncover possible abrupt shifts and gradual trends. Double cumulative curve analysis was used to investigate the changes in hydrological response attributable to either human influence or climatic variability. The results indicate a significant decline in lake volumes at a mean rate of 9.35 × 106 m3 year?1. Most of the river gauging stations showed no evidence of trends in the annual mean and maximum flows as well as seasonal flows. Annual minimum flows, however, showed abrupt shifts and significant (upward/downward) trends at the main outlet stations. Precipitation in the basin showed no evidence of abrupt shifts, but a few stations showed gradual decline. The observed changes in precipitation could not explain the decline in both minimum flows and lake volumes. The findings show no evidence of any impact of climate change for the Lake Naivasha basin over the past 50 years. This implies that other factors, such as changes in land cover and infrastructure development, have been responsible for the observed changes in streamflow and lake volumes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
72.
Thermokarst lakes are a widespread feature of the Arctic tundra, in which highly dynamic processes are closely connected with current and past climate changes. We investigated late Quaternary sediment dynamics, basin and shoreline evolution, and environmental interrelations of Lake El'gene‐Kyuele in the NE Siberian Arctic (latitude 71°17′N, longitude 125°34′E). The water‐body displays thaw‐lake characteristics cutting into both Pleistocene Ice Complex and Holocene alas sediments. Our methods are based on grain size distribution, mineralogical composition, TOC/N ratio, stable carbon isotopes and the analysis of plant macrofossils from a 3.5‐m sediment profile at the modern eastern lake shore. Our results show two main sources for sediments in the lake basin: terrigenous diamicton supplied from thermokarst slopes and the lake shore, and lacustrine detritus that has mainly settled in the deep lake basin. The lake and its adjacent thermokarst basin rapidly expanded during the early Holocene. This climatically warmer than today period was characterized by forest or forest tundra vegetation composed of larches, birch trees and shrubs. Woodlands of both the HTM and the Late Pleistocene were affected by fire, which potentially triggered the initiation of thermokarst processes resulting later in lake formation and expansion. The maximum lake depth at the study site and the lowest limnic bioproductivity occurred during the longest time interval of ~7 ka starting in the Holocene Thermal Maximum and lasting throughout the progressively cooler Neoglacial, whereas partial drainage and an extensive shift of the lake shoreline occurred ~0.9 cal. ka BP. Correspondingly, this study discusses different climatic and environmental drivers for the dynamics of a thermokarst basin.  相似文献   
73.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
74.
75.
76.
77.
Constraining global average temperatures to 2 °C above pre-industrial levels will probably require global energy system emissions to be halved by 2050 and complete decarbonization by 2100. In the nationally orientated climate policy framework codified under the Paris Agreement, each nation must decide the scale and method of their emissions reduction contribution while remaining consistent with the global carbon budget. This policy process will require engagement amongst a wide range of stakeholders who have very different visions for the physical implementation of deep decarbonization. The Deep Decarbonization Pathways Project (DDPP) has developed a methodology, building on the energy, climate and economics literature, to structure these debates based on the following principles: country-scale analysis to capture specific physical, economic and political circumstances to maximize policy relevance, a long-term perspective to harmonize short-term decisions with the long-term objective and detailed sectoral analysis with transparent representation of emissions drivers through a common accounting framework or ‘dashboard’. These principles are operationalized in the creation of deep decarbonization pathways (DDPs), which involve technically detailed, sector-by-sector maps of each country’s decarbonization transition, backcasting feasible pathways from 2050 end points. This article shows how the sixteen DDPP country teams, covering 74% of global energy system emissions, used this method to collectively restrain emissions to a level consistent with the 2 °C target while maintaining development aspirations and reflecting national circumstances, mainly through efficiency, decarbonization of energy carriers (e.g. electricity, hydrogen, biofuels and synthetic gas) and switching to these carriers. The cross-cutting analysis of country scenarios reveals important enabling conditions for the transformation, pertaining to technology research and development, investment, trade and global and national policies.

Policy relevance

In the nation-focused global climate policy framework codified in the Paris Agreement, the purpose of the DDPP and DDPs is to provide a common method by which global and national governments, business, civil society and researchers in each country can communicate, compare and debate differing concrete visions for deep decarbonization in order to underpin the necessary societal and political consensus to design and implement short-term policy packages that are consistent with long-term global decarbonization.  相似文献   
78.
Most structures are subjected to more cyclic loads during their life time than static loads. These cyclic action could be a result of either natural or man-made activities and may lead to soil failure. In order to understand the response of the foundation and its interaction with these complex cyclic loadings, various researchers have over the years developed different constitutive models. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model-based identification of the cyclic constitutive parameters which to a large extent govern the quality of the model output. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimisation strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However, for the back analysis (calibration) of the soil response to oscillatory load functions, this article gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high-quality solutions are obtained with minimum computational effort.  相似文献   
79.
The advent in satellite altimetry with the most accurate satellite radar altimeter since 1992 and its successive missions have enabled the routine global monitoring of water-level (or stage) for surface waters and changes in the quantities of dammed water reservoirs. However, satellite altimeter measurements typically have spatial resolution capable of observing only large water bodies, such as major lakes and rivers. This paper addresses the challenges of how to investigate water levels in medium (~?1 km in width) to small (~?100 m and narrower) rivers. Comparisons between the ENVISAT altimetry ICE-1 waveform retracking height and standard water-level measurements for multiple sections of Ohio River, Columbia River, and Red River of the North in the United States (US) reveals that the satellite altimetry measured water levels agree well with those observed at nearby US Geological Survey gaging stations over the 10-year period starting from 2002. The significant results include those obtained at Thompson, North Dakota (ND, correlation coefficient or R value of 0.76 between satellite and in situ water-level measurements) and Fargo, ND (R?=?0.74), where the stream channels of Red River are merely?~?50 m and ~?40 m wide, respectively, under normal climatic conditions. In addition, demonstrations of the approach over largely inaccessible portions of Tigris–Euphrates Rivers and Helmand River in the Middle East aided in understanding hydrology in these systems. This study demonstrates the ability of satellite radar altimetry to characterize rivers in these study regions which are much narrower than 100 m in width.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号