首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   4篇
  国内免费   10篇
测绘学   2篇
大气科学   2篇
地球物理   22篇
地质学   55篇
海洋学   3篇
综合类   7篇
自然地理   5篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   9篇
  2016年   7篇
  2015年   7篇
  2014年   7篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2000年   3篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
61.
A slight variation in the magnitude of stream flow can have a substantial influence on the development of water resources. The Songhua River Basin (SRB) serves as a major grain commodity basin and is located in the northeastern region of China. Recent studies have identified a gradual decrease in stream flows, which presents a serious risk to water resources of the region. It is therefore necessary to assess the variation in stream flow and to predict the future of stream flows and droughts to make a comprehensive plan for agricultural irrigation. The simulation of monthly stream flows and the investigation of the influence of climate on the stream flow in the SRB were performed by utilizing the Integrated Water Evaluation and Planning (WEAP) tool coupled with observed precipitation data, as well as the Asian Precipitation-Highly-Resolved Observational Data Integration towards Evaluation of Water Resources (APHRODITE’s Water Resources) precipitation product. The Nash–Sutcliffe coefficient (NSC) was used to assess the WEAP efficiency. During the time of calibration, NSC was obtained as 0.90 and 0.67 using observed and APHRODITE precipitation data, respectively. The results indicate that WEAP can be used effectively in the SRB. The application of the model suggested a maximum decline in stream flow, reaching 24% until the end of 21st century under future climate change scenarios. The drought indices (standardized drought index and percent of normal index) demonstrated that chances of severe to extreme drought events are highest in 2059, 2060 and 2085, while in the remaining time period mild to moderate drought events may occur in the entire study area. The drought duration, severity and intensity for the period of 2011–2099 under all scenarios, [(A1B: 12, ? 1.55, ? 0.12), (A2: 12, ? 1.41, ? 0.09), (max. wetting and warming conditions: 12, ? 1.37, ? 0.11) and (min. wetting and warming conditions: 12, ? 1.69, ? 0.19)], respectively.  相似文献   
62.
Liao  Jianxing  Gou  Yang  Feng  Wentao  Mehmood  Faisal  Xie  Yachen  Hou  Zhengmeng 《Acta Geotechnica》2020,15(2):279-295

Although hydraulic fracturing has been massively studied and applied as a key technique to enhance the gas production from tight formations, some problems and uncertainties exist to accurately predict and analyze the fracture behavior in complex reservoirs, especially in the naturally fractured reservoirs like shale reservoirs. This paper presents a full 3D numerical model (FLAC3D) to study hydraulic fracturing behavior under the impact of preexisting orthogonal natural fractures. In this numerical model, the hydraulic fracture propagation direction is assumed perpendicular to the minimum principal stress and activated only by tensile failure, whereas the preexisting natural fractures can be activated by tensile or shear failure or a combination of them, and only tensile failure can open the natural fracture as well. The newly developed model was used to study the impact of preexisting orthogonal natural fractures on hydraulic fracturing behavior, based on a multistage hydraulic fracturing operation in a naturally fractured reservoir from the Barnett Shale formation, northwest of Texas in USA. In this multistage operation, two more representative stages, i.e., stage 1 with a relatively large horizontal stress anisotropy of 3.3 MPa and stage 4 with a comparatively small one of 1.3 MPa, were selected to conduct the simulation. Based on the numerical results, one can observe that the interaction between hydraulic and natural fracture is driven mainly by induced stress around fracture tip. Besides, the horizontal stress anisotropy plays a key role in opening the natural fracture. Thus, no significant opened fracture is activated on natural fracture in stage 1, while in stage 4 an opened fracture invades to about 90 m into the first natural fracture. Conversely, the hydraulic fracture length in stage 1 is much longer than in stage 4, as some fluid volume is stored in the opened natural fracture in stage 4. In this work, the shear failure on natural fractures is treated as the main factor for inducing the seismic events. And the simulated seismic events, i.e., shear failure on natural fractures, are very comparable with the measured seismic events.

  相似文献   
63.
Drainage basin morphometry is a quantitative way of describing the characteristics of the surface form of a drainage basin and provides important information about the region’s topography and underlying geological structures. It plays an important role in hydrogeological investigations for delineating zones of adequate groundwater potential and selecting sites for construction of artificial recharge structures.  相似文献   
64.
The Kohistan–Ladakh Arc in the Himalaya–Karakoram region represents a complete section of an oceanic arc where the rocks from mantle to upper crustal levels are exposed. Generally this arc was regarded as of Jurassic–Cretaceous age and was welded to Asia and India by Northern and Southern Sutures respectively. Formation of this arc, timings of its collisions with Asia and India, and position of collision boundaries have always been controversial. Most authors consider that the arc collided with Asia first during 102–75 Ma and then with India during 55–50 Ma, whereas others suggest that the arc collided with India first at or before 61 Ma, and then the India–arc block collided with Asia ca 50 Ma. Recently published models of the later group leave several geological difficulties such as an extremely rapid drifting rate of the Indian Plate (30 ± 5 cm/year) northwards between 61–50 Ma, absence of a large ophiolite sequence and accretionary wedge along the Northern Suture, obduction of ophiolites and blueschists along the Southern Suture, and the occurrence of a marine depositional environment older than 52 Ma in the Indian Plate rocks south of the Southern Suture. We present a review based on geochemical, stratigraphic, structural, and paleomagnetic data to show that collision of the arc with Asia happened first and with India later.  相似文献   
65.
This paper addresses the study conducted on the performance of landfill liner interface parameters. Interface shear strength parameters for various combinations of 9 different lining materials were studied and presented in this paper. This comprehensive testing program covers the interfaces between: (1) soil and compacted clay liner (CCL), (2) geomembrane (HDPEs or PVC) and soil, (3) geosynthetic clay liner (GCL)/CCL and soil, (4) geomembrane and geotextile, (5) geotextile and soil, (6) geotextile and GCL/CCL, and (7) geomembrane and GCL/CCL. The experiments were conducted for both at dry or optimum moisture condition and at saturated or wet condition. The interface performance under both conditions were compared to access the material performances. Tabulated summaries of interface test data under dry or optimum moisture condition (OMO) and saturated or wet condition are presented in the paper.  相似文献   
66.
Theoretical and Applied Climatology - Drought is a complex natural hazard that has been recurrently occurred in many regions across the globe. Therefore, precise drought characterization and its...  相似文献   
67.
Major accidents are low-frequency, high-consequence accidents which are not well supported by conventional statistical methods due to the scarcity of directly relevant data. Modeling and decomposition techniques such as event tree have been proved as robust alternatives as they facilitate incorporation of partially relevant near accident data–accident precursor data—in probability estimation and risk analysis of major accidents. In this study, we developed a methodology based on event tree and hierarchical Bayesian analysis to establish informative distributions for offshore blowouts using data of near accidents, such as kicks, leaks, and failure of blowout preventers collected from a variety of offshore drilling rigs. These informative distributions can be used as predictive tools to estimate relevant failure probabilities in the future. Further, having a set of near accident data of a drilling rig of interest, the informative distributions can be updated to render case-specific posterior distributions which are of great importance in quantitative risk analysis. To cope with uncertainties, we implemented the methodology in a Markov Chain Monte Carlo framework and applied it to risk assessment of offshore blowouts in the Gulf of Mexico.  相似文献   
68.
Radar estimates of rainfall are being increasingly applied to flood forecasting applications. Errors are inherent both in the process of estimating rainfall from radar and in the modelling of the rainfall–runoff transformation. The study aims at building a framework for the assessment of uncertainty that is consistent with the limitations of the model and data available and that allows a direct quantitative comparison between model predictions obtained by using radar and raingauge rainfall inputs. The study uses radar data from a mountainous region in northern Italy where complex topography amplifies radar errors due to radar beam occlusion and variability of precipitation with height. These errors, together with other error sources, are adjusted by applying a radar rainfall estimation algorithm. Radar rainfall estimates, adjusted and not, are used as an input to TOPMODEL for flood simulation over the Posina catchment (116 km2). Hydrological model parameter uncertainty is explicitly accounted for by use of the GLUE (Generalized Likelihood Uncertainty Estimation). Statistics are proposed to evaluate both the wideness of the uncertainty limits and the percentage of observations which fall within the uncertainty bounds. Results show the critical importance of proper adjustment of radar estimates and the use of radar estimates as close to ground as possible. Uncertainties affecting runoff predictions from adjusted radar data are close to those obtained by using a dense raingauge network, at least for the lowest radar observations available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
69.
Land sliding is a geotechnical event that includes a wide range of ground movements such as rockfalls, deep failure of slopes and shallow debris flows, and it can cause various problems in varied civil fields such as roads and dams. Since most conventional methods are neither inexpensive nor applicable everywhere, attention has nowadays been drawn to soil bioengineering using vegetation as the environment-friendly method for slope stabilization. Soil bioengineering or using vegetation in civil engineering design is mostly applicable to shallow slope stabilization projects characterized by unstable slopes with surface movement. Vegetation has both a silent effect on soil improvement to predict the landslide and a mechanical role to increase shear and pulling-out stress on the soil. During the last decade, many researches have been carried out to clarify the effect of vegetation on slope stability, but many questions still remain to be answered.  相似文献   
70.
Lining contact pressure and ground deformation of Raghadan transportation tunnel (Amman, Jordan) were investigated. The tunnel is 1.1 km in length and 13.5 m in diameter. This study was intended to integrate useful relations among the widely used rock classification system (RMR: rock mass rating), Hoek–Brown classification, and lining-ground interaction. The materials encountered along the tunnel alignment were limestone, dolomatic limestone, marly limestone, dolomite, and sillicified limestone. The ground conditions along the tunnel alignment including bedding planes, joint sets and joint conditions, rock quality, water flow, and rock strength were evaluated based on the drilled boreholes and rock exposures. Elasto-plastic finite element analyses were conducted to study the effect of rock mass conditions and tunnel face advance on the behavior of lining-ground interaction. The results of the analyses showed that lining contact pressure decreases linearly with the increase in RMR value. Also the results showed that tunnel lining contact pressure and crown inward displacement decreases with the increase in the unsupported distance (distance between tunnel face and the end of the erected lining). Ground displacement above the tunnel crown was found to be increases in an increasing rate with the decrease in the depth above the crown. This displacement was also found to be affected by the RMR value and the unsupported distance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号