首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   6篇
  国内免费   4篇
测绘学   2篇
大气科学   9篇
地球物理   27篇
地质学   49篇
海洋学   5篇
天文学   14篇
自然地理   9篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   9篇
  2013年   8篇
  2012年   9篇
  2011年   4篇
  2010年   10篇
  2009年   9篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有115条查询结果,搜索用时 31 毫秒
81.
Laboratory experiments were performed to study the influence of density and viscosity layering on the formation and stability of plumes. Viscosity ratios ranged from 0.1 to 6400 for buoyancy ratios between 0.3 and 20, and Rayleigh numbers between 105 and 2.108. The presence of a chemically stratified boundary layer generates long-lived thermochemical plumes. These plumes first develop from the interface as classical thermal boundary layer instabilities. As they rise, they entrain by viscous coupling a thin film of the other layer and locally deform the interface into cusps. The interfacial topography and the entrainment act to further anchor the plumes, which persist until the chemical stratification disappears through entrainment, even for Rayleigh numbers around 108. The pattern of thermochemical plumes remains the same during an experiment, drifting only slowly through the tank. Scaled to an Earth’s mantle without plate tectonics, our results show that: (1) thermochemical plumes are expected to exist in the mantle, (2) they could easily survive hundreds of millions of years, depending on the size and magnitude of the chemical heterogeneity on which they are anchored, and (3) their drift velocity would be at most 1-2 mm/yr. They would therefore produce long-lived and relatively fixed hotspots on the lithosphere. However, the thermochemical plumes would follow any large scale motion imposed on the chemical layer. Therefore, the chemical heterogeneity acts more as a ‘floating anchor’ than as an absolute one.  相似文献   
82.
In aqueous medium, solid surfaces are in general electrically charged. The induced electrical and chemical properties govern numerous phenomena, such as colloidal stability or transport of pollutants. Numerous industrial processes make use of these properties. The understanding of the underlying mechanisms at molecular level is of high importance in order to predict and master the behaviour of dispersed matter in the environment and in industrial processes. The present paper shows the evolution of theories and experimental methods, their recent developments and applications. To cite this article: F. Thomas et al., C. R. Geoscience 334 (2002) 633–648.  相似文献   
83.
Salinization problems in the NEGB: results from thermohaline simulations   总被引:1,自引:0,他引:1  
The occurrence of salty waters close to the surface is a well-known problem in the North East German Basin. Previous numerical simulations showed that near-surface brine occurrences are due to the interaction of hydrostatic and thermally induced forces (mixed convection). The influence of hydraulic permeabilities and thermal conductivities on the observed patterns remained an open question. Based on a hydro-geochemical dataset, thermohaline simulations are carried out in order to quantify the impact of these physical parameters on brine migration. The results indicate that the salinity and temperature profiles are strongly controlled by hydraulic permeabilities and can locally be influenced by thermal conductivities.  相似文献   
84.
正1Met Office, Exeter EX1 3PB, UK2National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China  相似文献   
85.
Shelf‐edge deltas play a critical role in shelf‐margin accretion and deepwater sediment delivery, yet much remains to be understood about the detailed linkage between shelf edge and slope sedimentation. The shelf edge separates the flat‐lying shelf from steeper slope regions, and is observable in seismic data and continuous outcrops; however, it is commonly obscured in non‐continuous outcrops. Defining this zone is essential because it segregates areas dominated by shelf currents from those governed by gravity‐driven processes. Understanding this linkage is paramount for predicting and characterizing associated deepwater reservoirs. In the Tanqua Karoo Basin, the Permian Kookfontein Formation shelf‐slope clinothems are well‐exposed for 21 km along depositional strike and dip. Two independent methods identified the shelf‐edge position, indicating that it is defined by: (i) a transition from predominantly shelf‐current to gravitational deposits; (ii) an increase in soft‐sediment deformation; (iii) a significant gradient increase; and (iv) clinothem thickening. A quantitative approach was used to assess the impact of process‐regime variability along the shelf edge on downslope sedimentation. Facies proportions were quantified from sedimentary logs and photographic panels, and integrated with mapped key surfaces to construct a stratigraphic grid. Spatial variability in facies proportions highlights two types of shelf‐edge depositional zones within the same shelf‐edge delta. Where deposition occurred in fluvial‐dominated zones, the slope is sand rich, channelized with channels widening downslope, and rich in collapse features. Where deltaic deposits indicate considerable tidal reworking, the deposits are thin and pinch‐out close to the shelf edge, and the slope is sand poor and lacks channelization. Amplification of tidal energy, and decrease in fluvial drive on the shelf, coincides with a decrease in mouth bar and shelf‐edge collapse, and a lack of channelization on the slope. This analysis suggests that process‐regime variability along the shelf edge exercised significant control on shelf‐edge progradation, slope channelization and deepwater sediment delivery.  相似文献   
86.
87.
A suitable model for the macroscopic behavior of accretion disk-jet systems is provided by the equations of MagnetoHydroDynamics (MHD). These equations allow us to perform scale-encompassing numerical simulations of multidimensional nonlinear magnetized plasma flows. For that purpose, we continue the development and exploitation of the Versatile Advection Code (VAC) along with its recent extension which employs dynamically controlled grid adaptation. In the adaptive mesh refinement AMRVAC code, modules for simulating any-dimensional special relativistic hydro- and magnetohydrodynamic problems are currently operational. Here, we review recent 3D MHD simulations of fundamental plasma instabilities, relevant when dealing with cospatial shear flow and twisted magnetic fields. Such magnetized jet flows can be susceptible to a wide variety of hydro (e.g. Kelvin-Helmholtz) or magnetohydrodynamic (e.g. current driven kink) instabilities. Recent MHD computations of 3D jet flows have revealed how such mutually interacting instabilities can in fact aid in maintaining jet coherency. Another breakthrough from computational magnetofluid modeling is the demonstration of continuous, collimated, transmagnetosonic jet launching from magnetized accretion disks. Summarizing, MHD simulations are rapidly gaining realism and significantly advance our understanding of nonlinear astrophysical magnetofluid dynamics.  相似文献   
88.
This study aims at understanding the physico-chemical interactions between the saturated brine and the rocks enclosing the underground salt workings in Lorraine (eastern France). These anhydrite-rich and argillaceous rocks were characterized in terms of mineralogy, micro-texture and connected porosity. Then, the two main lithofacies, massive anhydrite and anhydrite-rich argillite, were immersed in brine during more than 1 year. During this batch experiment, the argillites were affected by macroscopic splitting, contrarily to the massive anhydrite. Micro-texture and brine chemical analyses clearly show the swelling due to the hydration of anhydrite into gypsum inside the argillites, whereas hydration occurs superficially on the massive anhydrite, due to its very low permeability. Anhydrite–gypsum transformation is promoted by the presence of dissolved strontium and potassium in saturated brine. The low activity of water in saturated brine does not allow the clay fraction to swell significantly during the experiment. Thus, the expansion resulting from the hydration of anhydrite into gypsum might be responsible of the splitting of argillite in a saturated brine environment. The superficial anhydrite hydration on massive anhydrite can be explained by the low amount of connected porosity (less than 1%).  相似文献   
89.
Movies taken by witnesses of extreme flood events are increasingly available on video sharing websites. They potentially provide highly valuable information on flow velocities and hydraulic processes that can help improve the post‐flood determination of discharges in streams and flooded areas. We investigated the troubles and potential of applying the now mature large‐scale particle image velocimetry (LSPIV) technique to such flood movies that are recorded under non‐ideal conditions. Processing was performed using user‐friendly, free software only, such as Fudaa‐LSPIV. Typical issues related to the image processing and to the hydrological analysis are illustrated using a selected example of a pulsed flash‐flood flow filmed in a mountainous torrent. Simple corrections for lens distortion (fisheye) and limited incoherent camera movement (shake) were successfully applied, and the related errors were reduced to a few percents. Testing the different image resolution levels offered by YouTube showed that the difference in time‐averaged longitudinal velocity was less than 5% compared with full resolution. A limited number of GRPs, typically 10, is required, but they must be adequately distributed around the area of interest. The indirect determination of the water level is the main source of uncertainty in the results, usually much more than errors because of the longitudinal slope and waviness of the free‐surface of the flow. The image‐based method yielded direct discharge estimates of the base flow between pulses, of the pulse waves, and of the time‐averaged flow over a movie sequence including a series of five pulses. A comparison with traditional indirect determination methods showed that the critical‐depth method may produce significantly biassed results for such a fast, unsteady flow, while the slope‐area method seems to be more robust but would overestimate the time‐averaged flow rate if applied to the high‐water marks of a pulsed flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
90.
We sampled modern chironomids at multiple water depths in Lake Annecy, France, before reconstructing changes in chironomid assemblages at sub-decadal resolution in sediment cores spanning the last 150 years. The lake is a large, deep (zmax = 65 m), subalpine waterbody that has recently returned to an oligotrophic state. Comparison between the water-depth distributions of living chironomid larvae and subfossil head capsules (HC) along three surface-sediment transects indicated spatial differences in the influence of external forcings on HC deposition (e.g. tributary effects). The transect with the lowest littoral influence and the best-preserved, depth-specific chironomid community characteristics was used for paleolimnological reconstructions at various water depths. At the beginning of the twentieth century, oxygen-rich conditions prevailed in the lake, as inferred from M. contracta-type and Procladius sp. at deep-water sites (i.e. cores from 56 to 65 m) and Paracladius sp. and H. grimshawi-type in the core from 30 m depth. Over time, chironomid assemblages in cores from all three water depths converged toward the dominance of S. coracina-type, indicating enhanced hypoxia. The initial change in chironomid assemblages from the deep-water cores occurred in the 1930s, at the same time that an increase in lake trophic state is inferred from an increase in total organic carbon (TOC) concentration in the sediment. In the 1950s, an assemblage change in the core from 30 m water depth reflects the rapid expansion of the hypoxic layer into the shallower region of the lake. Lake Annecy recovered its oligotrophic state in the 1990s. Chironomid assemblages, however, still indicate hypoxic conditions, suggesting that modern chironomid assemblages in Lake Annecy are decoupled from the lake trophic state. Recent increases in both TOC and the hydrogen index indicate that changes in pelagic functioning have had a strong indirect influence on the composition of the chironomid assemblage. Finally, the dramatic decrease in HC accumulation rate over time suggests that hypoxic conditions are maintained through a feedback loop, wherein the accumulation of (un-consumed) organic matter and subsequent bacterial respiration prevent chironomid re-colonization. We recommend study of sediment cores from multiple water depths, as opposed to investigation of only a single core from the deepest part of the lake, to assess the details of past ecological changes in large deep lakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号