首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  国内免费   3篇
大气科学   9篇
地球物理   3篇
地质学   28篇
海洋学   2篇
天文学   2篇
自然地理   3篇
  2020年   1篇
  2019年   1篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1985年   2篇
  1977年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
11.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   
12.
Abstract— Magmatic iron meteorites are generally agreed to represent metal that crystallized in asteroidal cores from a large pool of liquid. Estimates suggest that the metallic liquid contained significant amounts of S and P, both of which are incompatible and exert a strong effect on trace element partitioning. In tandem, S and P are also prone to cause immiscibility between sulfide liquid and P-rich metal liquid. The liquid immiscibility field occupies ~70% of the portion of the Fe-Ni-S-P system in which Fe is the first phase to crystallize. In spite of this, previous fractional crystallization models have taken into account only one liquid phase and have encountered significant discrepancies between the meteorite data and model values for the key elements Ni, Ir, Ga, Ge and Au at even moderate degrees of fractionation. For the first time, a model for trace element partitioning between immiscible liquids in the Fe-Ni-S-P system is presented in order to assess the effects on fractionation in magmatic iron meteorite groups. The onset of liquid immiscibility causes a significant change in the enrichment patterns of S and P in both liquids; so elements with contrasting partitioning behavior will show trends deviating clearly from one-liquid trends. A trend recorded in the solid metal will either be a smooth curve as long as equilibrium is maintained between the two liquids or the trend may diverge into a field limited by two extreme curves depending on the degree of disequilibrium. Bulk initial liquids for most magmatic groups have S/P (wt%) ratios well below 25. In these cases and due to the constitution of the Fe-Ni-S-P system, most of the metal will crystallize from the rapidly decreasing volume of metal liquid and only a subordinate amount from the sulfide liquid. Because of the strong extraction of P into the metal liquid, P will have a much larger influence on trace element partitioning than a low initial P content might suggest. My model calculations suggest that liquid immiscibility played a significant role during the solidification of the IIIAB parent body's core. The two-liquid model reproduces the IIIAB trends more closely than previous one-liquid models and can account for: (a) the general widening of the IIIAB trend with increasing Ni and decreasing Ir contents, (b) the occurrence of high-Ni members that are not strongly depleted in Ir, Ga and Ge; and (c) an upper limit at ~11 wt% Ni where the metal liquid was almost consumed.  相似文献   
13.
A unique troilite-iron-cohenite-rich lens was found on a ledgein the sediment-contaminated Kitdlit dyke on Disko. The lensdisplays a mineralogical diversity and extreme liquid evolutionnot previously described from any single magmatic sulphide ormetal liquid system. It was deposited at 1200 ?C and fo2 = 10–13as two immiscible liquids–a sulphide liquid and a C-richmetal liquid—which solidified from about 1100? to 300?C as a closed system in a thermal gradient. The lower iron-rich half of the lens formed by crystallizationof iron, cohenite, troilite, schreibersite and w?stite (in thatorder), with trace amounts of the phases found in the upperhalf of the lens. The approximate crystallization order of theupper troilite-rich half of the lens was: iron, cohenite, troilite,chromite, w?stite, fayalite (pseudomorphosed), high-T ‘chalcopyrite’,high-T ‘heazlewoodite’ (beta-(Ni, Fe, Cu, Co)3+?S2)and, finally, lead minerals. The latter comprise native lead,galena, altaite (PbTe), shandite (Ni3Pb2S2) and an unidentifiedphase. Additional immiscible liquids were formed during solidification.Oxysulphide liquid (roughly FeO with a minor FeS-component)exsolved from metal and sulphide liquid in equilibrium withiron and cohenite below 1100 ?C. Later, FeO-rich silicate liquid,and Pb-rich liquid with Ni, Cu, S and Te, exsolved from thesulphide liquid. Segregation of oxysulphide and Pb-rich liquidmay occur during core formation in planetoids, and there arethus important cosmochemical implications.  相似文献   
14.
Abstract

This paper aims at initiating a fundamental understanding of the suspended load transport of river sediment in unsteady flow. Laboratory erosion tests as well as artificial flood experiments are used to evaluate the influence of the transient regime on the transport efficiency of the flow. The erosion experiments reveal that the transport capacity is augmented when the unsteadiness of the flow increases. However, the influence of the transient regime is counteracted by the cohesive properties of the river bed. Field experiments with artificial floods released from a reservoir into a small canal confirm these findings and show a relationship between the friction velocity and the suspended load transport. An appropriate parameter β is proposed to evaluate the impact of the transient regime on the transport of suspended sediment.  相似文献   
15.
Paired stable oxygen isotope and Mg/Ca analyses in calcite tests of the mixed-layer-dwelling planktic foraminifer Globigerinoides ruber has been used to reconstruct equatorial Indian Ocean δ18O of seawater (δ18Osw) over the last ~137 thousand years. On the basis of ice-volume-corrected δ18Osw (δ18Osw–ivc), relative changes in sea surface salinity (SSS) have been estimated. The SSS estimates suggest three episodes of higher SSS (131–113 thousand years before present (kyr BP), 62–58 kyr BP, and 30–24 kyr BP) within the last glacial period as compared with the present. SSS comparison between interglacial episodes reveals that the surface seawater over the core site was significantly saltier during the penultimate interglacial than the Holocene. We suggest that the evolution of a seasonal insolation gradient between the Indian monsoon areas and the equator over the investigated time interval was instrumental in shaping the strength of the Indian winter and summer monsoons that left their imprints on the equatorial Indian Ocean SSS via freshwater input and wind-induced mixing. The study shows that the insolation difference between northern latitudes and the equator during winter affects monsoon strength in the Indian region, especially during cold intervals.  相似文献   
16.
17.
18.
Dehnert, A., Preusser, F., Kramers, J. D., Akçar, N., Kubik, P. W., Reber, R. & Schlüchter, C. 2010: A multi‐dating approach applied to proglacial sediments attributed to the Most Extensive Glaciation of the Swiss Alps. Boreas, Vol. 39, pp. 620–632. 10.1111/j.1502‐3885.2010.00146.x. ISSN 0300‐9483. The number and the timing of Quaternary glaciations of the Alps are poorly constrained and, in particular, the age of the Most Extensive Glaciation (MEG) in Switzerland remains controversial. This ice advance has previously been tentatively correlated with the Riss Glaciation of the classical alpine stratigraphy and with Marine Isotope Stage (MIS) 6 (186–127 ka). An alternative interpretation, based on pollen analysis and stratigraphic correlations, places the MEG further back in the Quaternary, with an age equivalent to MIS 12 (474–427 ka), or even older. To re‐evaluate this issue in the Swiss glaciation history, a multi‐dating approach was applied to proglacial deltaic ‘Höhenschotter’ deposits in locations outside the ice extent of the Last Glacial Maximum. Results of U/Th and luminescence dating suggest a correlation of the investigated deposits with MIS 6 and hence with the Riss Glaciation. Cosmogenic burial dating suffered from large measurement uncertainties and unusually high 26Al/10Be ratios and did not provide robust age estimates.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号