首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48921篇
  免费   476篇
  国内免费   271篇
测绘学   1208篇
大气科学   3602篇
地球物理   8835篇
地质学   20342篇
海洋学   3581篇
天文学   9616篇
综合类   199篇
自然地理   2285篇
  2021年   160篇
  2020年   198篇
  2019年   210篇
  2018年   3558篇
  2017年   3339篇
  2016年   2204篇
  2015年   560篇
  2014年   635篇
  2013年   1213篇
  2012年   1850篇
  2011年   3767篇
  2010年   3457篇
  2009年   3834篇
  2008年   3045篇
  2007年   3741篇
  2006年   1024篇
  2005年   1315篇
  2004年   1208篇
  2003年   1245篇
  2002年   991篇
  2001年   716篇
  2000年   669篇
  1999年   572篇
  1998年   576篇
  1997年   576篇
  1996年   440篇
  1995年   419篇
  1994年   380篇
  1993年   335篇
  1992年   309篇
  1991年   273篇
  1990年   303篇
  1989年   280篇
  1988年   234篇
  1987年   310篇
  1986年   257篇
  1985年   346篇
  1984年   383篇
  1983年   371篇
  1982年   335篇
  1981年   316篇
  1980年   326篇
  1979年   273篇
  1978年   305篇
  1977年   257篇
  1976年   265篇
  1975年   270篇
  1974年   228篇
  1973年   236篇
  1972年   154篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
993.
We address the issue of whether the Arctic (AO), and North Atlantic oscillations (NAO) are inseparable, forming an annular mode in the Northern Hemisphere atmospheric circulation. This annular mode is the leading empirical orthogonal function of hemispheric sea level pressure (SLP) data, explaining the largest amount of its variability. We examine whether the NAO and AO are inseparable spatial modes of the atmospheric circulation using rotated principal component analysis (RPCA), a methodology that identifies simple and unique patterns of spatial dataset variability. RPCA of the spring, summer, and autumn SLP fields from 1946-1998 reveal NAO and AO-like patterns, occurring as separate regional teleconnections forming the first and second principal components respectively. The RPCA-based NAO dipole pattern is like that observed in many prior studies, while the AO-like pattern exhibits high SLP variability over the Kara and Laptev seas. During winter however, and in annual analyses, a distinct AO-like pattern is not obtained and the two patterns may be inseparable using commonly accepted RPCA methods. The RPCA-based AO-like mode is significantly linked to north-central Siberian seasonal air temperatures and to the prevailing direction of motion of the underlying Arctic Ocean in summer, suggesting that the non-winter AO-like pattern, as a stand alone teleconnection separate from the NAO, contributes significantly to high-latitude climate and ocean variability. The winter NAO/AO inseparability is discussed as a possible effect of a shared winter storm track between the northeastern Atlantic and the Arctic.  相似文献   
994.
The ability of an atmospheric general circulation model to reproduce fundamental features of the wintertime extratropical Southern Hemisphere (SH) circulation is evaluated with emphasis on the daily variability of the SH mean flow and the mean flow-transient perturbations interaction. Two 10-year simulations using a new version of the LMDZ GCM with a stretched grid scheme centered at 45 °S and forced by climatological SST are performed: a high (144Ꮡ) and low (64Ꭹ) horizontal resolution runs. The performance of both simulations was determined by comparing several simulated fields (zonal wind, temperature, kinetic energy, transient eddy momentum and heat fluxes, Eliassen-Palm fluxes, Eady growth rate and baroclinic conversion term) against the European Centre for Medium Range Weather Forecast reanalyses (ERA). High and low-resolution simulations are similar in many respects; in particular, both experiments reproduce the main patterns of the southern extratropical large-scale circulation satisfactorily. Increasing resolution does not improve universally some spurious aspects of the low resolution simulation (e.g. the cold bias in the high polar troposphere, the debilitated subtropical jet, the low baroclinic conversion rate). Those aspects present little sensitivity to the model resolution. The interaction between transient eddies and zonal mean flow are examined. The low-resolution experiment is able to qualitatively represent the acceleration/deceleration of the mean flow by transient perturbations, south/north of 30 °S with an accuracy similar to that of the high-resolution experiment. Although both experiments represent the baroclinic structure of the mean flow satisfactorily, the model underestimates some transient properties due to the underestimation of the baroclinic conversion term in middle latitudes. Such misrepresentation does not improve with increasing resolution and is related to the relatively weak meridional temperature gradient and the inadequate geographical distribution of the eddy heat fluxes. In particular, the eddy kinetic energy is always underestimated. Eddy kinetic energy does not improve convincingly with increasing resolution, suggesting that the adequate representation of the storm tracks is highly influenced by the physical parametrizations.  相似文献   
995.
Summary The uncertainty in aerosol size distributions is a main source of errors in aerosol optical thickness determined from satellite measurements. To reduce the errors resulting from the uncertainty in aerosol size distributions, we have performed sensitivity analyses. It is found the errors resulting from the uncertainty in aerosol size distribution can be considerably reduced by using the Junge power law to approximate the aerosol size distribution in an actual atmosphere, if the exponent value is determined at the same time. An iterative algorithm is then developed for the simultaneous determination of aerosol optical thickness and the exponent of the Junge power law over ocean areas from the upwelling radiances measured in AVHRR visible and near infrared channels. A number of numerical experiments are carried out to investigate the validity of the Junge power law approximation by assuming the aerosol size distributions in an actual atmosphere are bimodal with different mode parameters, and by using the actual aerosol size distributions determined at several places by Kaufman et al. (1994). The results show that the errors in determined aerosol optical thickness resulting from the Junge power law approach are significantly reduced. The iterative algorithm is investigated further by comparing the aerosol optical thickness deduced from satellite measurement with that observed by a sun photometer. Received October 10, 2001 Revised December 28, 2001  相似文献   
996.
Summary ?For the LITFASS-98 experiment, from June 1 until June 30, 1998, the spatially resolved insolation at surface could be computed from NOAA-14 AVHRR data applying the modular analysis scheme SESAT (Strahlungs- und Energiebilanzen aus Satellitendaten). The satellite inferred insolation for this period shows for clear-sky regions a good agreement with surface based observations with a rms error of 76 Wm−2. For cloudy conditions the insolation is overestimated with respect to ground based observations, with a rms error between 83 and 118 Wm−2, depending on the cloud optical thickness. This overestimation can be explained by the surface heterogeneity, leading to underestimated cloud optical thickness, and also by a fixed relative humidity below clouds (55%, dry atmosphere) and a fixed horizontal visibility (50 km, clear atmosphere). A detailed study of comparable scales in space and time, considering the different observation geometries and sampling intervals, shows that a 30 min ground based observation can be compared with a 8 × 8 km2 mean by the satellite data. Received July 12, 2001; revised April 29, 2002; accepted June 7, 2002  相似文献   
997.
Using Remote Sensing to Assess Russian Forest Fire Carbon Emissions   总被引:7,自引:0,他引:7  
Russian boreal forests are subject to frequent wildfires. The resulting combustion of large amounts of biomass not only transforms forest vegetation, but it also creates significant carbon emissions that total, according to some authors, from 35–94 Mt C per year. These carbon emissions from forest fires should be considered an important part of the forest ecosystem carbon balance and a significant influence on atmospheric trace gases. In this paper we discuss a new method to assess forest fire damage. This method is based on using multi-spectral high-resolution satellite images, large-scale aerial photography, and declassified images obtained from the space-borne national security systems. A normalized difference vegetation index (NDVI) difference image was produced from pre- and post-fire satellite images from SPOT/HRVIR and RESURS-O/MSU-E images. A close relationship was found between values of the NDVI difference image and forest damage level. High-resolution satellite data and large-scale aerial-photos were used to calibrate the NDVI-derived forest damage map. The method was used for mapping of forest fire extent and damage and for estimating carbon emissions from burned forest areas.  相似文献   
998.
Summary ?A statistical analysis of wind speed and direction data for five selected meteorological stations at the Cyprus coast, is carried out in this study. Daily, monthly and annual variations of wind speed are established. The Weibull distribution statistics of the sites are also determined. In addition, an attempt is made to find the sea-breeze circulation effects in the same wind data. The wind statistics obtained are expected to serve as a validation test for wind energy applications, mainly along the southeastern coastline. Received April 5, 2001; revised February 13, 2002; accepted March 3, 2002  相似文献   
999.
1000.
Summary ?Retrievals of atmospheric aerosol optical thickness are highly dependent on the choice of the class describing the aerosol properties leading to significant errors while using classes available in the literature. High spectral resolution measurements from GOME (Global Ozone Monitoring Experiment) between the ultraviolet and the near infrared can be used for an accurate characterization of the aerosol optical properties. The radiometer MVIRI (METEOSAT Visible and Infrared Imager) on board the geostationary satellite METEOSAT, while being equipped only with broadband VIS channel, ensures an adequate half-hourly monitoring of the atmospheric conditions over a large portion of the Earth. The present algorithm is based on a combination of data from both sensors for the retrieval of the aerosol optical thickness at the reference wavelength of 0.55 μm (AOT). A case of a desert dust outbreak from the African continent over the Atlantic Ocean is examined. AOT values obtained using a priori fixed classes taken from the literature are compared with those retrieved with this algorithm using the GOME-derived classes. Systematic differences of the order of a few tenths on average are found which remain significant also after considering the measurement errors. This represents a novelty introduced by the synergetic use of both sensors. Received March 13, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号