首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
大气科学   14篇
地质学   24篇
海洋学   25篇
天文学   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   3篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1985年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
61.
62.
The climate model of intermediate complexity developed at the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) is supplemented by a scheme which takes into account the volcanic forcing of climate. With this model, ensemble experiments have been conducted for the 1600s–1900s, in which, along with the volcanic forcing, the anthropogenic forcing due to greenhouse gases and sulfate aerosols and the natural forcing due to variations in solar irradiance were taken into account. The model realistically reproduces the annual mean response of surface air temperature and precipitation to major eruptions both globally and regionally. In particular, the decreases in the annual mean global temperature T g in the IAP RAS CM after the largest eruptions in the latter half of the 20th century, the Mt. Agung (1963), El Chichon (1982), and Mt. Pinatubo (1991) volcanic eruptions, are 0.28, 0.27, and 0.46 K, respectively, in agreement with estimates from observational data. Moreover, in the IAP RAS CM, the volcanic eruptions result in a general precipitation decrease, especially over land in the middle and high latitudes of the Northern Hemisphere. The seasonal distribution of the response shows good agreement with observations for high-latitude eruptions and worse agreement for tropical and subtropical volcanoes. On interdecadal scales, volcanism leads to variations in T g on the order of 0.1 K. In numerical experiments with anthropogenic and natural forcings, the model reproduces a general change in surface air temperature over the past several centuries. Taking into account the volcanic forcing, along with that due to variations in solar irradiance, the model has partly reproduced the nonmonotonic global warming for the 20th century.  相似文献   
63.
The IAP RAS CM (Institute of Atmospheric Physics, Russian Academy of Sciences, climate model) has been extended to include a comprehensive scheme of thermal and hydrologic soil processes. In equilibrium numerical experiments with specified preindustrial and current concentrations of atmospheric carbon dioxide, the coupled model successfully reproduces thermal characteristics of soil, including the temperature of its surface, and seasonal thawing and freezing characteristics. On the whole, the model also reproduces soil hydrology, including the winter snow water equivalent and river runoff from large watersheds. Evapotranspiration from the soil surface and soil moisture are simulated somewhat worse. The equilibrium response of the model to a doubling of atmospheric carbon dioxide shows a considerable warming of the soil surface, a reduction in the extent of permanently frozen soils, and the general growth of evaporation from continents. River runoff increases at high latitudes and decreases in the subtropics. The results are in qualitative agreement with observational data for the 20th century and with climate model simulations for the 21st century.  相似文献   
64.
The analysis of asymmetry of probability distribution functions (PDF) is carried out for key atmospheric variables using the JRA-55 reanalysis data in the troposphere of the Northern Hemisphere for 1976–2014. The nonzero asymmetry of the PDF indicates the deviation of the PDF from the normal distribution. The analysis was carried out for two time-scale intervals: synoptic variability (SV) of 2–7 days and low-frequency variability (LV) of 9–30 days. Statistically significant deviations from the normal probability distribution occur in the regions of the most frequent formation of atmospheric baroclinic perturbations, i.e., over the western parts of the oceans in midlatitudes and downstream in the atmosphere. In the SV time-scale interval, a negative asymmetry of the vertical velocity is revealed in isobaric coordinates for the entire thickness of the free troposphere, which agrees with the overall dominance of cyclonic anomalies in this interval of time scales. In the LV interval, the asymmetry of this variable in the entire free troposphere is positive, which indicates the dominance of anticyclonic anomalies at these time scales. For the zonal velocity, temperature, and geopotential, the asymmetry sign of the PDF for variability with time scales of 2–7 days is different for the upper and lower free troposphere. The asymmetry of the PDF for atmospheric variables indicates the important role of the intermode interaction in the formation of baroclinic perturbations. The corresponding deviations of synoptic variability from the normal distribution, which is found in the upper troposphere of the subpolar and polar latitudes, can be related to the interaction of these perturbations with the winter polar vortex. These deviations of PDF from the normal distribution substantially increase the probability of the appearance of large (in absolute value) anomalies as compared to the case of the Gaussian PDF.  相似文献   
65.
The galaxy Mrk 421 was observed with the GT-48 Cherenkov telescope in 2004. The observations revealed a very-high-energy gamma-ray flux at a confidence level of 4.8 σ. Comparison with the constant gamma-ray flux from the Crab Nebula yielded an estimate of the total flux from Mrk 421, 1.7 ± 0.7 Crab (E ≥ 1 TeV).  相似文献   
66.
67.
We present two catalogues of positions of selected asteroids in the system of the Tycho Reference Catalogue from the photographic observations carried out on Mt. Maidanak with the AFR-1 wide-field astrograph (D = 230 mm, F = 2300 mm) and in Zvenigorod with the Zeiss wide-field astrograph (D = 400 mm, F = 2000 mm) in 1991–1993. The catalogue obtained on Maidanak contains 109 positions of selected asteroids; the one obtained in Zvenigorod contains 177 asteroid positions. The two catalogues are compared to show that they are uniform. The one-position mean square errors in the Maidanak and Zvenigorod catalogues are calculated: 0.306″, 0.153″ and 0.370″, 0.219″.  相似文献   
68.
Investigations into the nitrogen cycle in the climatic system of the earth are reviewed with special emphasis on the biospheric nitrogen cycle. Approaches to modeling the biogeochemical nitrogen turnover are described. Excluding the nitrogen cycle from consideration when probable consequences of climate change are analyzed can lead to inaccurate estimates of the ecosystem response, in particular, for regions where mineral compounds of soil nitrogen are a limiting factor for the development of vegetation cover. Numerical experiments with climatic models point to a substantial influence of the nitrogen turnover on the feedback between climatic characteristics and the carbon cycle. Models of the combined dynamics of carbon and nitrogen make it possible to obtain realistic estimates of present-day resources and fluxes of these elements in ecosystems, as well as to estimate their changes during possible climatic changes.  相似文献   
69.
The IAP RAS climate model of intermediate complexity is used to analyze the sensitivity of the area of continuous potential permafrost S cont to the rate of global temperature variation T gl in experiments with greenhouse-gas increases in the atmosphere. The influence of the internal variability of the model on the results is reduced by conducting ensemble runs with different initial conditions and analysis of the ensemble means. Idealized experiments with a linear or exponential dependence of the concentration of carbon dioxide in the atmosphere have revealed an increase in the magnitude of the temperature-sensitivity parameter of the area of continuous potential permafrost, k cont (= S cont, 0 t-1 dS cont/dT gl, where S cont, 0 is the present value of S cont). With a decrease in the linear trend coefficient of T gl from about 3 to about 2 K/100 yr, this parameter varies from approximately ?0.2 to ?0.4 K?1. With an even slower change in global temperature, k cont virtually does not vary and remains close to the value obtained from paleoreconstructions of the past warm epochs. Such a dependence of k cont on the rate of global warming is related mainly to the fact that the more rapid increase in T gl leads to a slower response over high-latitude land. The contribution from changes in the annual temperature cycle, though comparable in the order of magnitude, is about one-third as large as the contribution from the variation of the latitudinal structure of the response of annual mean temperature. The total reduction in the annual cycle of temperature during warming partly compensates for the effect of the annual mean temperature rise, thus decreasing the magnitude of k cont. In numerical experiments with greenhouse gas changes in accordance with SRES scenarios A2 and B2 and scenario IS92a, there is also a monotonic increase in the magnitude of the normalized parameter of temperature sensitivity of the area of continuous permafrost with a decrease in the growth rate of global temperature. For scenarios A2-CO2, IS92a-GHG, IS92a-CO2, B2-GHG, and B2-CO2, its value is almost indistinguishable from the steady-state asymptotic value of ?0.4 K?1. For A2-GHG, the magnitude of k cont turns out to be far less (k cont ≈ ?0.3 K?1).  相似文献   
70.
Solar System Research - The peculiarities of the composition and internal structure of chondrite NWA 12370, petrological type H5 S1 W1, were studied by means of Raman spectroscopy, XRF, and...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号