首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  国内免费   4篇
测绘学   1篇
大气科学   1篇
地球物理   3篇
地质学   15篇
海洋学   2篇
天文学   5篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   3篇
  2005年   1篇
  2001年   4篇
排序方式: 共有27条查询结果,搜索用时 444 毫秒
11.
We investigated the khatyrkite–cupalite holotype sample, 1.2 × 0.5 mm across. It consists of khatyrkite (Cu,Zn)Al2, cupalite (Cu,Zn)Al, and interstitial material with approximate composition (Zn,Cu)Al3. All mineral phases of the holotype sample contain Zn and lack Fe that distinguishes them from khatyrkite and cupalite in the Khatyrka meteorite particles (Bindi et al. 2009 , 2011 , 2012 , 2015 ; MacPherson et al. 2013 ; Hollister et al. 2014 ). Neither highly fractionated natural systems nor geo‐ or cosmochemical processes capable of forming the holotype sample are known so far. The bulk chemistry and thermal history of khatyrkite–cupalite assemblage in the holotype sample hint for its possible industrial origin. Likewise, the aluminides in the Khatyrka meteorite particles may also be derived from industrial materials and mixed with extraterrestrial matter during gold prospecting in the Listvenitovy Stream valley.  相似文献   
12.
We have developed an active dipole that is intended for use in new generation low frequency array applications. The preamplifier of the active dipole has very high linearity (input IP2 = 70 dBm, input IP3 = 31 dBm) and low noise temperature (100?C360 K). The frequency dependence of the dipole impedance and the match between the dipole and preamplifier have been optimized to achieve Galactic noise limited operation. The ratio between the antenna temperature due to Galactic noise and the noise temperature of the preamplifier is 10 ± 1.5 dB over the whole 10 to 70 MHz range. The total cost of the active cross-dipole is 220 euro.  相似文献   
13.
Multibeam bathymetric surveys and single-beam profiles were collected in 2003–2010 from aboard the Ukrainian RV Professor Vodyanitskiy (cruises PV-58 and PV-60, 2003 and 2004), and the German RV Meteor (cruise M-72, legs 1 and 4, 2007) and RV Maria S. Merian (cruise MSM-15, leg 2, 2010) along the continental margin of the NW Black Sea. Integrating published, reprocessed and novel data has revealed the existence of a major continuous channel extending from the Dnepr paleo-delta into greater water depths. It is more than 90 km long, 1.1 km wide and up to 125 m deep. On the upper slope (120–960 m water depth), a number of smaller channels merge into the large, Y-shaped Dnepr Canyon, which then continues obliquely downslope via this submarine channel to at least 1,815 m water depth off the Crimean continental margin, NW Black Sea. The channel could be an important, hitherto unknown link between the shallow oxic and deep anoxic environments of the Black Sea, along which sediment and organic matter could be funneled into the deep-sea basin. This would have far-reaching implications for investigations dealing with marine geology and biology, climate change, as well as oil and natural gas exploitation. The unusual alignment of the channel along the margin of the basin, as well as the location and mode of channel termination in deeper waters deserve future research.  相似文献   
14.
The reaction FeS2(cr) + 2Ag(cr) = ‘FeS’(cr) + Ag2S(cr) was studied by measuring the temperature dependence of the electromotive force (EMF) of the all-solid-state galvanic cell with common gas space:
(-)Pt|Ag|AgI|Ag2S,FeS,FeS2|Pt(+)  相似文献   
15.
Structural evolution of the Kamchatka–Aleutian junction area in late Mesozoic and Tertiary was generally controlled by (1) the processes of subduction in Kronotskiy and Proto-Kamchatka subduction zones and (2) collision of the Kronotskiy arc against NE Eurasia margin. Two structural zones of the pre-Pliocene age and six structural assemblages are recognized in studied region. 1: Eastern ranges zone comprises SE-vergent thrust folded belt, which evolved in accretionary and collisional setting. Two structural assemblages (ER1 and ER2), developed there, document shortening in the NW–SE direction and in the N–S direction, respectively. 2: Eastern Peninsulas zone generally corresponds to Kronotskiy arc terrane. Four structural assemblages are recognized in this zone. They characterize (1) precollisional deformations in the accretionary wedge (EP1) and in the fore-arc basin and volcanic belt (EP2), and (2) syn-collisional deformation of the entire Kronotskiy terrane in plunging folds (EP3) and deformations in the foreland basin (EP4). Analysis of paleomagnetic declinations versus present day structural strike in the Kronotskiy arc terrane shows that originally the arc was trending from west to east. Relative position of the accretionary wedge, fore-arc basin and volcanic belt, as well as northward dipping thrusts in accretionary wedge indicate, that a northward dipping subduction zone was located south of the arc. The accretionary wedge developed from the Late Cretaceous through the Eocene, and it implies that the subduction zone maintained its direction and position during this time. It implies that Kronotskiy arc was neither a part of the Pacific nor Kula plates and was located on an individual smaller plate, which included the arc and Vetlovka back-arc basin. Motion of the Kronotskiy arc towards Eurasia was connected only with NW-directed subduction at Kamchatka margin since Middle Eocene (42–44 Ma). Emplacement of the Kronotskiy arc at the Kamchatka margin occurred between Late Eocene and Early Miocene. This is based on the age of syn-collisional plunging folds in Kronotskiy terrane, and provenance data for the Upper Eocene to Middle Miocene Tyushevka basin, which indicate in situ evolution of the basin with respect to Kamchatka. Collision was controlled by the common motion of the Kronotskiy arc with Pacific plate towards the northwest, and by the motion of the Eurasian margin towards the south. The latter motion was responsible for the southward deflection of the western part of the Kronotskiy arc (EP3 structures), and for oblique transpressional structures in the collisional belt (ER2 structures).  相似文献   
16.
17.

Background  

Until recently, a lot of arable lands were abandoned in many countries of the world and, especially, in Russia, where about half a million square kilometers of arable lands were abandoned in 1961-2007. The soils at these fallows undergo a process of natural restoration (or self-restoration) that changes the balance of soil organic matter (SOM) supply and mineralization.  相似文献   
18.
A new mineral kobyashevite, Cu5(SO4)2(OH)6·4H2O (IMA 2011–066), was found at the Kapital’naya mine, Vishnevye Mountains, South Urals, Russia. It is a supergene mineral that occurs in cavities of a calcite-quartz vein with pyrite and chalcopyrite. Kobyashevite forms elongated crystals up to 0.2 mm typically curved or split and combined into thin crusts up to 1?×?2 mm. Kobyashevite is bluish-green to turquoise-coloured. Lustre is vitreous. Mohs hardness is 2½. Cleavage is {010} distinct. D(calc.) is 3.16 g/cm3. Kobyashevite is optically biaxial (?), α 1.602(4), β 1.666(5), γ 1.679(5), 2 V(meas.) 50(10)°. The chemical composition (wt%, electron-microprobe data) is: CuO 57.72, ZnO 0.09, FeO 0.28, SO3 23.52, H2O(calc.) 18.39, total 100.00. The empirical formula, calculated based on 18 O, is: Cu4.96Fe0.03Zn0.01S2.01O8.04(OH)5.96·4H2O. Kobyashevite is triclinic, $ P\overline{\,1 } $ , a 6.0731(6), b 11.0597(13), c 5.5094(6)?Å, α 102.883(9)°, β 92.348(8)°, γ 92.597(9)°, V 359.87(7)?Å3, Z?=?1. Strong reflections of the X-ray powder pattern [d,Å-I(hkl)] are: 10.84–100(010); 5.399–40(020); 5.178–12(110); 3.590–16(030); 2.691–16(20–1, 040, 002), 2.653–12(04–1, 02–2), 2.583–12(2–11, 201, 2–1–1), 2.425–12(03–2, 211, 131). The crystal structure (single-crystal X-ray data, R?=?0.0399) сontains [Cu4(SO4)2(OH)6] corrugated layers linked via isolated [CuO2(H2O)4] octahedra; the structural formula is CuCu4(SO4)2(OH)6·4H2O. Kobyashevite is a devilline-group member. It is named in memory of the Russian mineralogist Yuriy Stepanovich Kobyashev (1935–2009), a specialist on mineralogy of the Urals.  相似文献   
19.
In order to determine robustness of the models based on the viscous shallow-water equations in the boundary-fitted coordinates the solution characteristics of the boundary-value problem are compared for different forms of equations in contravariant, covariant and Cartesian presentations of the velocity. Distinctions between these forms associated with presentation of advection and eddy viscosity in their approximation on a curvilinear grid are established. A boundary-value problem for the tidal dynamics computation in the Strait of Messina (Mediterranean Sea) is formulated with use of different forms of equations in the boundary-fitted coordinates. An estimation and comparison of the modelling results are performed.  相似文献   
20.
This article analyses the determinants of CO2 emission for 15 post-Soviet Union independent (PSI) countries given their recent transition to market-based economies and their relatively high levels of corruption. The direct and indirect effects of economic growth on CO2 emission for the PSI countries are derived using a multiple-equation generalized method of moment (GMM) approach to account for simultaneity among corruption, growth and CO2 emission. A linear relationship between gross domestic product (GDP) and CO2 emission was observed from the analysis. Furthermore, GDP influences CO2 emission directly, but also indirectly through its impact on corruption. Similarly, corruption affects CO2 emission directly, as well as indirectly through its impact on GDP. Political democracy and economic freedom increase CO2 emission indirectly through their impact on economic growth. Improved energy efficiency and the EU climate policy reduce CO2 emission, while inflows of foreign direct investment tend to increase CO2 emission.

Policy relevance

First, PSI countries need to invest more in efficient energy technologies to mitigate CO2 emission levels significantly. Second, PSI policies aimed at reducing deforestation (thereby increasing population density) may help mitigate carbon emission. Third, PSI countries would be well served to recognize the detrimental effects of foreign direct investment before embarking on a misguided policy path that attracts such inflows at any cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号