首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   7篇
  国内免费   4篇
测绘学   9篇
大气科学   8篇
地球物理   32篇
地质学   64篇
海洋学   14篇
天文学   8篇
自然地理   16篇
  2024年   1篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   10篇
  2007年   3篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   7篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 31 毫秒
121.
Two types of spatially and temporally associated Jurassic granitic rocks, I-type and A-type, occur as pluton pairs in several locations in southern Hunan Province, South China. This paper aims to investigate the genetic relationships and tectonic mechanisms of the co-development of distinct granitic rocks through petrological, geochemical and geochronological studies. Zircon LA-ICPMS dating results yielded concordant U–Pb ages ranging from 180 to 148 Ma for the Baoshan and Tongshanling I-type granodiorites, and from 180 to 158 Ma for the counterpart Huangshaping and Tuling A-type granites. Petrologically, the I-type granodiorites consist of mafic minerals such as hornblende whereas the A-type granites are dominated by felsic minerals (e.g., quartz, K-feldspar and plagioclase). Major and trace element analyses indicate that the I-type granodiorites have relatively low SiO2 (64.5–71.0%) and relatively high TiO2 (0.28–0.51%), Al2O3 (13.8–15.5%), total FeO (2.3–4.7%), MgO (1.3–2.6%) and P2O5 (0.10–0.23%) contents, and the A-type granites are characterized by high concentrations of Rb (212–1499?ppm), Th (18.3–52.6?ppm), U (11.8–33.6?ppm), Ga (20.0–36.6?ppm), Y (27.1–134.0?ppm) and HREE (20.3–70.0?ppm), with pronounced negative Eu anomalies (Eu/Eu*?=?0.01–0.15). Moreover, the I-type granodiorites are classified as collision-related granites emplaced under a compressional environment, whereas the A-type granites are within-plate granites generated in an extensional setting. Zircon Hf isotopic compositions vary substantially for these granitic rocks. The I-type granodiorites are characterized by relatively young Hf model ages (TDM1?=?1065–1302 Ma, TDMC =1589–2061 Ma) and moderately negative εHf(t) values (–5.9 to –11.5), whereas the A-type granites have very old model ages (TDM1?=?1454–2215 Ma, TDMC?=?2211–2974 Ma) and pronounced negative εHf(t) values (–15.8 to –28.3). These petrochemical and isotopic characteristics indicate that the I-type granodiorites may have been derived from a deep source involving mantle-derived juvenile (basaltic) and crustal (pelitic) components, whereas the A-type granites may have been sourced from melting of meta-greywacke in the crust. This study proposes that the pressure and temperature differences in the source regions caused by combined effects of intra-plate mantle upwelling and plate subduction are the major controlling factors of the co-development of the two different types of magmas. Crustal anatexis related to lithospheric delamination and upwelling of hot asthenosphere under a high pressure and temperature environment led to the formation of the I-type magmas. On the other hand, the A-type magmas were formed from melting of the shallower part of the crust, where extensional stress was dominant and mantle-crust interaction was relatively weak. Rifts and faults caused by mantle upwelling developed from surface to depth and successively became channels for the ascending I- and A-type magmas, resulting in the emplacement of magmas in adjacent areas from sources at different depths.  相似文献   
122.
A long-standing question in Paleogene climate concerns the frequency and mechanism of transient greenhouse gas-driven climate shifts (hyperthermals). The discovery of the greenhouse gas-driven Paleocene–Eocene Thermal Maximum (PETM; ~ 55 Ma) has spawned a search for analogous events in other parts of the Paleogene record. On the basis of high-resolution bulk sediment and foraminiferal stable isotope analyses performed on three lower Danian sections of the Atlantic Ocean, we report the discovery of a possible greenhouse gas-driven climatic event in the earliest Paleogene. This event – that we term the Dan-C2 event – is characterized by a conspicuous double negative excursion in δ13C and δ18O, associated with a double spike in increased clay content and decreased carbonate content. This suggests a double period of transient greenhouse gas-driven warming and dissolution of carbonates on the seafloor analogous to the PETM in the early Paleocene at ~ 65.2 Ma. However, the shape of the two negative carbon isotope excursions that make up the Dan-C2 event is different from the PETM carbon isotope profile. In the Dan-C2 event, these excursions are fairly symmetrical and each persisted for about ~ 40 ky and are separated by a short plateau that brings the combined duration to ~ 100 ky, suggesting a possible orbital control on the event. Because of the absence of a long recovery phase, we interpret the Dan-C2 event to have been associated with a redistribution of carbon that was already in the biosphere. The Dan-C2 event and other early Paleogene hyperthermals such as the short-lived early Eocene ELMO event may reflect amplification of a regular cycle in the size and productivity of the marine biosphere and the balance between burial of organic and carbonate carbon.  相似文献   
123.
ABSTRACT. The three Pueblo mission churches of San Esteban del Rey, Nuestra Señora de Guadalupe, and San José de Laguna are the most visually striking structures in the western New Mexico pueblos of Acoma, Zuni, and Laguna. Prime examples of “structures of permanence” on the landscape, the churches define local cultural identity. Church permanence and Pueblo identity are expressed in a five‐part typology of visible characteristics: natural materials and hand labor, massive exterior form, adjoining cemeteries, syncretism of interior decorations, and structural decay and rebirth. Permanence must, however, be understood as an evolving condition, undergoing new representations as multicultural relationships evolve.  相似文献   
124.
125.
首次在中国发现的矿物   总被引:2,自引:0,他引:2  
本文主要内容是根据作者近期发表在英文杂志《岩石与矿物》上的同名文章译成的,它追述了在中国发现的新矿物种(类)的基本历史。列出了在中华人民共和国发现的99种矿物的名字及其发现地点和文献出处。本文修正了英语文献中的大量错误,从语言学角度介绍了矿物学在英文和中文交流之间存在的困难。作者为中文稿增加了一些新内容,更新了几处发现地的资料,还增加了一个新矿物:碲锌(铁)石(Zineospiroffite),它发表在英文稿付印之后。本文按化学组成和年代顺序对中国发现的新矿物进行了分析。所有列出的新矿物都是经过IMA-CNMMN批准的或者是“祖先级”(“grandfathered”)的矿物,只有一个是没有被批准的矿物。新矿物是按英文字母的顺序排列的。  相似文献   
126.
127.
128.
On February 28, 2021, a fireball dropped ∼0.6 kg of recovered CM2 carbonaceous chondrite meteorites in South-West England near the town of Winchcombe. We reconstruct the fireball's atmospheric trajectory, light curve, fragmentation behavior, and pre-atmospheric orbit from optical records contributed by five networks. The progenitor meteoroid was three orders of magnitude less massive (∼13 kg) than any previously observed carbonaceous fall. The Winchcombe meteorite survived entry because it was exposed to a very low peak atmospheric dynamic pressure (∼0.6 MPa) due to a fortuitous combination of entry parameters, notably low velocity (13.9 km s−1). A near-catastrophic fragmentation at ∼0.07 MPa points to the body's fragility. Low entry speeds which cause low peak dynamic pressures are likely necessary conditions for a small carbonaceous meteoroid to survive atmospheric entry, strongly constraining the radiant direction to the general antapex direction. Orbital integrations show that the meteoroid was injected into the near-Earth region ∼0.08 Myr ago and it never had a perihelion distance smaller than ∼0.7 AU, while other CM2 meteorites with known orbits approached the Sun closer (∼0.5 AU) and were heated to at least 100 K higher temperatures.  相似文献   
129.
Hydrogeophysical surveys were carried out in a 3.2 km2 Scottish catchment where previous isotope studies inferred significant groundwater storage that makes important contributions to streamflow. We used electrical resistivity tomography (ERT) to characterize the architecture of glacial drifts and make an approximation of catchment‐scale storage. Four ERT lines (360–535 m in length) revealed extensive 5–10 m deep drift cover on steeper slopes, which extends up to 20–40 m in valley bottom areas. Assuming low clay fractions, we interpret variable resistivity as correlating with variations in porosity and water content. Using Archie's Law as a first approximation, we compute likely bounds for storage along the ERT transects. Areas of highest groundwater storage occur in valley bottom peat soils (up to 4 m deep) and underlying drift where up to 10 000 mm of precipitation equivalent may be stored. This is consistent with groundwater levels which indicate saturation to within 0.2 m of the surface. However, significant slow groundwater flow paths occur in the shallower drifts on steeper hillslopes, where point storage varies between ~1000 mm–5000 mm. These fluxes maintain saturated conditions in the valley bottom and are recharged from drift‐free areas on the catchment interfluves. The surveys indicate that catchment scale storage is >2000 mm which is consistent with tracer‐based estimates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号