首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   25篇
测绘学   11篇
大气科学   36篇
地球物理   119篇
地质学   185篇
海洋学   24篇
天文学   69篇
自然地理   30篇
  2022年   2篇
  2021年   6篇
  2020年   9篇
  2019年   5篇
  2018年   14篇
  2017年   11篇
  2016年   19篇
  2015年   15篇
  2014年   15篇
  2013年   22篇
  2012年   15篇
  2011年   21篇
  2010年   33篇
  2009年   21篇
  2008年   19篇
  2007年   14篇
  2006年   20篇
  2005年   21篇
  2004年   24篇
  2003年   14篇
  2002年   13篇
  2001年   8篇
  2000年   12篇
  1999年   11篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1974年   4篇
  1931年   1篇
  1926年   1篇
  1924年   1篇
排序方式: 共有474条查询结果,搜索用时 31 毫秒
71.
Wetlands are valuable ecosystems that provide many valuable services, yet many of these important ecosystems are at risk because of current trends in climate change. The Prairie Pothole Region (PPR) in the upper‐midwest of the United States and south‐central Canada, characterized by glacially sculpted landscapes and abundant wetlands, is one such vulnerable region. According to regional/global climate model predictions, drought occurrence will increase in the PPR region through the 21st century and thus will probably cause the amount of water in wetlands to decline. Water surface area (WSA) of Kidder County, ND, from 1984–2011 was measured by classifying TM/ETM+(Landsat Thematic Mapper / Enhanced Thematic Mapper Plus) images through the modified normalized difference water index. We then developed a linear model based on the WSA of these wetlands and historical climate data and used this to determine the wetland sensitivity to climate change and predict future wetlands WSA in the PPR. Our model based on Palmer drought severity index (PDSI) of the current year (PDSIt ? 0) and of the previous two years (PDSIt ? 2) can explain 79% of the annual wetland WSA variance, suggesting a high sensitivity of wetlands to drought/climate change. We also predicted the PPR wetlands WSA in the 21st century under A1B scenario (a mid‐carbon emission scenario) using simulated PDSI based on Intergovernmental Panel on Climate Change AR4 22‐model ensemble climate. According to our prediction, the WSA of the PPR wetlands will decrease to less than half of the baseline WSA (defined as the mean wetlands WSA of the 2000s) by the mid of the 21st century, and to less than one‐third by the 2080s, and will then slightly increase in the 2090s. This considerable future wetland loss caused only by climate change provides important implication to future wetland management and climate adaptation policy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
72.
Transfer functions describing the coprecipitation of various trace elements (TE; As, Cd, Co, Cu, Cr, Mo, Ni, Pb, Zn), precipitating with iron(oxihydr)oxides from an aqueous solution, were developed and implemented in the computer model ‘Seeper’. ‘Seeper’ was developed to predict the progression of the concentrations of inorganic pollutants in unsaturated soils underneath contaminated areas and to evaluate the prospective contamination of the groundwater. Transfer functions provide a straight and simple relation between the coprecipitation of TE and easy to obtain standard soil parameters, without excessive repercussions on the usability and computation time of the model. Laboratory experiments were conducted to quantify coprecipitation in solutions with pH values ranging from 5 to 12 and containing various iron and TE concentrations. For the examined TE, the transfer functions describe the coprecipitated fraction as a function of the pH value and the concentration ratio between precipitated iron and a TE. The transfer functions yielded a good prediction of cadmium, cobalt, copper, molybdenum, nickel, and zinc (R 2 from 0.73 to 0.83). As for arsenic, chromium, and lead the correlation was not as good albeit a significant influence of precipitating iron on the mobility of these elements was observed and represented in the corresponding transfer functions.  相似文献   
73.
A variety of methods exist for interpolating Cartesian or spherical surface data onto an equidistant lattice in a procedure known as gridding. Methods based on Green's functions are particularly simple to implement. In such methods, the Green's function for the gridding operator is determined and the resulting gridding solution is composed of the superposition of contributions from each data constraint, weighted by the Green's function evaluated for all output–input point separations. The Green's function method allows for considerable flexibility, such as complete freedom in specifying where the solution will be evaluated (it does not have to be on a lattice) and the ability to include both surface heights and surface gradients as data constraints. Green's function solutions for Cartesian data in 1-, 2- and 3-D spaces are well known, as is the dilogarithm solution for minimum curvature spline on a spherical surface. Here, the spherical surface case is extended to include tension and the new generalized Green's function is derived. It is shown that the new function reduces to the dilogarithm solution in the limit of zero tension. Properties of the new function are examined and the new gridding method is implemented in Matlab® and demonstrated on three geophysical data sets.  相似文献   
74.
75.
Characterisation of mass transfer during subduction is fundamental to understand the origin of compositional heterogeneities in the upper mantle. Fe isotopes were measured in high-pressure/low-temperature metabasites (blueschists, eclogites and retrograde greenschists) from the Ile de Groix (France), a Variscan high-pressure terrane, to determine if the subducted oceanic crust contributes to mantle Fe isotope heterogeneities. The metabasites have δ56Fe values of +0.16 to +0.33‰, which are heavier than typical values of MORB and OIB, indicating that their basaltic protolith derives from a heavy-Fe mantle source. The δ56Fe correlates well with Y/Nb and (La/Sm)PM ratios, which commonly fractionate during magmatic processes, highlighting variations in the magmatic protolith composition. In addition, the shift of δ56Fe by +0.06 to 0.10‰ compared to basalts may reflect hydrothermal alteration prior to subduction. The δ56Fe decrease from blueschists (+0.19 ± 0.03 to +0.33 ± 0.01‰) to eclogites (+0.16 ± 0.02 to +0.18 ± 0.03‰) reflects small variations in the protolith composition, rather than Fe fractionation during metamorphism: newly-formed Fe-rich minerals allowed preserving bulk rock Fe compositions during metamorphic reactions and hampered any Fe isotope fractionation. Greenschists have δ56Fe values (+0.17 ± 0.01 to +0.27 ± 0.02‰) similar to high-pressure rocks. Hence, metasomatism related to fluids derived from the subducted hydrothermally altered metabasites might only have a limited effect on mantle Fe isotope composition under subsolidus conditions, owing to the large stability of Fe-rich minerals and low mobility of Fe. Subsequent melting of the heavy-Fe metabasites at deeper levels is expected to generate mantle Fe isotope heterogeneities.  相似文献   
76.
Activity concentration data from ambient radioxenon measurements in ground level air, which were carried out in Europe in the framework of the International Noble Gas Experiment (INGE) in support of the development and build-up of a radioxenon monitoring network for the Comprehensive Nuclear-Test-Ban Treaty verification regime are presented and discussed. Six measurement stations provided data from 5 years of measurements performed between 2003 and 2008: Longyearbyen (Spitsbergen, Norway), Stockholm (Sweden), Dubna (Russian Federation), Schauinsland Mountain (Germany), Bruyères-le-Châtel and Marseille (both France). The noble gas systems used within the INGE are designed to continuously measure low concentrations of the four radioxenon isotopes which are most relevant for detection of nuclear explosions: 131mXe, 133mXe, 133Xe and 135Xe with a time resolution less than or equal to 24 h and a minimum detectable concentration of 133Xe less than 1 mBq/m3. This European cluster of six stations is particularly interesting because it is highly influenced by a high density of nuclear power reactors and some radiopharmaceutical production facilities. The activity concentrations at the European INGE stations are studied to characterise the influence of civilian releases, to be able to distinguish them from possible nuclear explosions. It was found that the mean activity concentration of the most frequently detected isotope, 133Xe, was 5–20 mBq/m3 within Central Europe where most nuclear installations are situated (Bruyères-le-Châtel and Schauinsland), 1.4–2.4 mBq/m3 just outside that region (Stockholm, Dubna and Marseille) and 0.2 mBq/m3 in the remote polar station of Spitsbergen. No seasonal trends could be observed from the data. Two interesting events have been examined and their source regions have been identified using atmospheric backtracking methods that deploy Lagrangian particle dispersion modelling and inversion techniques. The results are consistent with known releases of a radiopharmaceutical facility.  相似文献   
77.
Base isolation is a well known technology that has been proven to reduce structural response to horizontal ground accelerations. However, vertical response still remains a topic of concern for base‐isolated buildings, perhaps more so than in fixed‐base buildings as isolation is often used when high performance is required. To investigate the effects of vertical response on building contents and nonstructural components, a series of full‐scale shaking table tests were conducted at the E‐Defense facility in Japan. A four‐story base‐isolated reinforced concrete building was outfitted as a medical facility with a wide variety of contents, and the behavior of the contents was observed. The rubber base isolation system was found to significantly amplify vertical accelerations in some cases. However, the damage caused by the vertical ground motions was not detrimental when peak vertical floor accelerations remained below 2 g with three exceptions: (1) small items placed on shelves slid or toppled; (2) objects jumped when placed on nonrigid furniture, which tended to increase the response; and (3) equipment with vertical eccentricities rocked and jumped. In these tests, all equipment and nonstructural components remained functional after shaking. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
78.
Baseline monitoring at the proposed enhanced gas recovery site in Altmark (Germany) was carried out in combination with theoretical and laboratory investigations to describe and predict the principles of expected stable carbon isotope and dissolved inorganic carbon (DIC) trends during CO2 injection in reservoirs. This provides fundamental data for site-specific characterisation for monitoring purposes. Baseline ??13C values at the Altmark site ranged between ?1.8 and ?11.5??? and DIC values were about 2?mmol?L?1. These baseline values form the basis for a theoretical study on the influences of the ambient reservoir conditions on the state of geochemical and isotope equilibrium of the reservoir fluids. Transferring this theoretical study to the Altmark site enables predictions on geochemical trends during potential injection. Assuming that CO2 would be injected at the Altmark site to pCO2?=?100?bar and with a ??13C of ?30???, at isotopic and geochemical equilibrium, ??13CDIC values would approach this end-member, and DIC concentrations of 1,000?mmol L?1 would be expected. Laboratory experiments were conducted at low pCO2 levels (4?C35?bars) to mimic the approach of a CO2 plume at a monitoring well. These results support field investigations from other sites: that ??13CDIC is a sensitive tool for monitoring CO2 migration in the subsurface and simultaneously allows quantification of geochemical trapping of CO2.  相似文献   
79.
A large multi-institutional nearshore field experiment was conducted at Truc Vert, on the Atlantic coast of France in early 2008. Truc Vert’08 was designed to measure beach change on a long, sandy stretch of coast without engineering works with emphasis on large winter waves (offshore significant wave height up to 8 m), a three-dimensional morphology, and macro-tidal conditions. Nearshore wave transformation, circulation and bathymetric changes involve coupled processes at many spatial and temporal scales thus implying the need to improve our knowledge for the full spectrum of scales to achieve a comprehensive view of the natural system. This experiment is unique when compared with existing experiments because of the simultaneous investigation of processes at different scales, both spatially (from ripples to sand banks) and temporally (from single swash events to several spring-neap tidal cycles, including a major storm event). The purpose of this paper is to provide background information on the experiment by providing detailed presentation of the instrument layout and snapshots of preliminary results.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号