首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
测绘学   1篇
大气科学   22篇
地球物理   18篇
地质学   27篇
海洋学   3篇
天文学   1篇
自然地理   2篇
  2023年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1966年   2篇
  1954年   1篇
排序方式: 共有74条查询结果,搜索用时 265 毫秒
41.
42.
Wind-tunnel studies of dispersion processes of traffic exhaust in urban street canyons with tree planting were performed and tracer gas concentrations using electron capture detection (ECD) and flow fields using laser Doppler velocimetry (LDV) were measured. It was found that tree planting reduces the air exchange between street canyons and the ambience. In comparison to treeless street canyons, higher overall pollutant concentrations and lower flow velocities were measured. In particular, for perpendicular approaching wind, markedly higher concentrations at the leeward canyon wall and slightly lower concentrations at the windward canyon wall were observed. Furthermore, a new approach is suggested to model porous vegetative structures such as tree crowns for small-scale wind-tunnel applications. The approach is based on creating different model tree crown porosities by incorporating a certain amount of wadding material into a specified volume. A significant influence of the crown porosity on pollutant concentrations was found for high degrees of porosity, however, when it falls below a certain threshold, no further changes in pollutant concentrations were observed.  相似文献   
43.
Decadal prediction is one focus of the upcoming 5th IPCC Assessment report. To be able to interpret the results and to further improve the decadal predictions it is important to investigate the potential predictability in the participating climate models. This study analyzes the upper limit of climate predictability on decadal time scales and its dependency on sea ice albedo parameterization by performing two perfect ensemble experiments with the global coupled climate model EC-Earth. In the first experiment, the standard albedo formulation of EC-Earth is used, in the second experiment sea ice albedo is reduced. The potential prognostic predictability is analyzed for a set of oceanic and atmospheric parameters. The decadal predictability of the atmospheric circulation is small. The highest potential predictability was found in air temperature at 2?m height over the northern North Atlantic and the southern South Atlantic. Over land, only a few areas are significantly predictable. The predictability for continental size averages of air temperature is relatively good in all northern hemisphere regions. Sea ice thickness is highly predictable along the ice edges in the North Atlantic Arctic Sector. The meridional overturning circulation is highly predictable in both experiments and governs most of the decadal climate predictability in the northern hemisphere. The experiments using reduced sea ice albedo show some important differences like a generally higher predictability of atmospheric variables in the Arctic or higher predictability of air temperature in Europe. Furthermore, decadal variations are substantially smaller in the simulations with reduced ice albedo, which can be explained by reduced sea ice thickness in these simulations.  相似文献   
44.
45.
The tasks of providing multi-decadal climate projections and seasonal plus sub-seasonal climate predictions are of significant societal interest and pose major scientific challenges. An outline is presented of the challenges posed by, and the approaches adopted to, tracing the possible evolution of the climate system on these various time-scales. First an overview is provided of the nature of the climate system’s natural internal variations and the uncertainty arising from the complexity and non-linearity of the system. Thereafter consideration is given sequentially to the range of extant approaches adopted to study and derive multi-decadal climate projections, seasonal predictions, and significant sub-seasonal weather phenomena. For each of these three time-scales novel results are presented that indicate the nature (and limitations) of the models used to forecast the evolution, and illustrate the techniques adopted to reduce or cope with the forecast uncertainty. In particular, the contributions (i) appear to exemplify that in simple climate models uncertainties in radiative forcing outweigh uncertainties associated with ocean models, (ii) examine forecast skills for a state-of-the-art seasonal prediction system, and (iii) suggest that long-lived weather phenomena can help shape intra-seasonal climate variability. Finally, it is argued, that co-consideration of all these scales can enhance our understanding of the challenges associated with uncertainties in climate prediction.  相似文献   
46.
GPS geodetic measurements were conducted around the Askja central volcano located at the divergent plate boundary in north Iceland in 1987, 1990, 1992 and 1993. The accuracy of the 1987 and 1990 measurements is in the range of 10 mm for horizontal components; the accuracy of the 1992 and 1993 measurements is about 4 mm in the horizontal plane. Regional deformation in the Askja region is dominated by extension. Points located outside a 30–45 km wide plate boundary deformation zone indicate a displacement of 2.4±0.5 cm/a in the direction N 99°E±12° of the Eurasian plate relative to the North American plate in the period 1987–1990. Within the plate boundary deformation zone extensional strain accumulates at a rate of 0.8 strain/a. Displacement of control points next to Askja (>7 km from the caldera center) in the periods 1990–1993 and 1992–1993 show deflation and contraction towards the caldera. These results are in accordance with the results obtained by other geodetic methods in the area, which indicate that the deflation at Askja occurs in response to a pressure decrease at about 2.8 km depth, located close to the center of the main Askja caldera. A Mogi point source was fixed at this location and the GPS data used to solve for the source strength. A central subsidence of 11±2.5 cm in the period 1990–1993 is indicated, and 5.5±1.5 cm in the period 1992–1993. The maximum tensional strain rate, according to the point source model, occurs at a horizontal distance of 2.5–6 km from the source, at the same location as the main caldera boundary. Discrepancies between the observed displacements and predicted displacements from the Mogi model near the Askja caldera can be attributed to the regional eastwest extension that occurs at Askja.  相似文献   
47.
48.
We report concentrations of cosmogenic 10Be and 36Cl used to determine erosion depths in the recently deglaciated bedrock at Goldbergkees in the Eastern Alps. The glacier covered the sampling sites during the Little Ice Age (LIA) until c. 1940. The youngest ages calculated from these concentrations match the known exposure time after the post‐LIA exposure of <100 years. The apparent age (no cover, no erosion) of most samples, however, is significantly older. We show that the measured nuclide concentrations represent subglacial erosion depths, rather than exposure times. In particular, erosion depths calculated using 10Be and 36Cl concentrations of individual samples match well, whereas apparent 36Cl ages are consistently older than 10Be ages. The bedrock at the ‘youngest’ surfaces was deeply eroded (≥ 297 cm) by the Goldbergkees during the late Holocene. In contrast, bedrock at the margin of the LIA ice extent was eroded ≤35 cm. These values convert to subglacial erosion rates on the order of 0.1 mm/a to >5 mm/a. While modeled erosion rates depend on the duration of glacial cover and erosion intrinsic to the different exposure scenarios used for calculation (700–3300 years), modeled total erosion depths are insensitive (5–20% change). Analysis of erosion depths on the transverse valley profile shows a general trend of greatest erosion part way up the valley side and less erosion under thin ice at the lateral margin. A second profile along the valley axis indicates depth of erosion is greatest where the ice abuts the foot of the investigated bedrock riegel and at its lee side just beyond the crest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
49.
Sediment accumulation can occur in response to a change in either tectonic or climatic driving forces. Here, we explore these controls on the deposition of the Lima Conglomerate, Peru. We use a combination of quantitative methods to explore the age of sediment accumulation, the provenance of the material and the paleo-erosion rates recorded by these deposits. Isochron burial dating with cosmogenic 10Be and 26Al yield an age of c. 500 ka for the base (490 ± 70 ka) and the uppermost sample situated c. 30 m higher upsection (490 ± 80 ka). Results of paleo-erosion rate estimates with concentrations of in situ 10Be show a c. 60% increase from 105 ± 10 mm ka-1 for the base to 169 ± 14 mm ka-1 for the uppermost sample. Finally, provenance tracing with in situ U/Pb ages on detrital zircon implies that the material has been derived from the entire drainage basin. The combination of results suggests that sediment accumulation occurred in response to an erosional pulse, which affected the entire basin within a short time interval. Because 10Be data represents a large spatial record of erosion, we exclude the possibility where a breakout of a lake or a focused release of material in response to earthquakes, were responsible for the large material flux. Instead, the erosional pulse was likely to have occurred at the scale of the entire basin, supporting the idea of a larger-scale, most likely climate driven control. In this context, the accumulation age of c. 500 ka falls into an orbital cycle fostering the emerging picture in the literature that sediment routing in the Andes have most likely been driven by climate and cyclic changes. We suggest that the Andean mountain range offers an ideal laboratory to explore the erosional history in relation to climate patterns, at least in Peru. © 2018 John Wiley & Sons, Ltd.  相似文献   
50.
Modelling the Effect of Tree Foliage on Sprayer Airflow in Orchards   总被引:1,自引:0,他引:1  
The effect of tree foliage on sprayer airflow through pear trees in a fruit orchard was studied and modelled in detail. A new three-dimensional (3-D) computational fluid dynamics model that integrates the 3-D canopy architecture with a local closure model to simulate the effect of the stem and branches and leaves of trees separately on airflow was developed. The model was validated with field observations made in an experimental orchard (pcfruit, Sint-Truiden, Belgium) in spring and summer 2008 and was used to investigate the airflow from three air-assisted orchard sprayers (Condor V, Duoprop and AirJet quatt). Velocity magnitudes were measured before and behind leafless and fully-leafed pear canopies across the row while the operating sprayers are passing along the row, and were compared with the simulations. The simulation results predicted the measured values well with all the local relative errors within 20%. The effect of foliar density on airflow from the three air assisted sprayers was manifested by changing the magnitude and direction of the sprayers’ air velocity behind the canopy, especially at the denser regions of the canopy and by changing the pattern of velocity decay horizontally along the jet. The developed methodology will also allow a thorough investigation of atmospheric airflow in canopy structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号