首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1237篇
  免费   64篇
  国内免费   21篇
测绘学   38篇
大气科学   80篇
地球物理   353篇
地质学   481篇
海洋学   137篇
天文学   163篇
综合类   8篇
自然地理   62篇
  2024年   2篇
  2023年   10篇
  2022年   15篇
  2021年   28篇
  2020年   26篇
  2019年   33篇
  2018年   49篇
  2017年   51篇
  2016年   69篇
  2015年   37篇
  2014年   49篇
  2013年   73篇
  2012年   70篇
  2011年   105篇
  2010年   70篇
  2009年   92篇
  2008年   76篇
  2007年   58篇
  2006年   64篇
  2005年   44篇
  2004年   50篇
  2003年   40篇
  2002年   35篇
  2001年   19篇
  2000年   14篇
  1999年   19篇
  1998年   13篇
  1997年   8篇
  1996年   7篇
  1995年   10篇
  1994年   10篇
  1993年   5篇
  1992年   2篇
  1991年   10篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   8篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1971年   5篇
  1970年   4篇
排序方式: 共有1322条查询结果,搜索用时 37 毫秒
101.
We use a well-monitored eruption of Tungurahua volcano to test the validity of the frictional behaviour, also called Mohr–Coulomb, which is generally used in geophysical flow modelling. We show that the frictional law is not appropriate for the simulation of pyroclastic flows at Tungurahua. With this law, the longitudinal shape of the simulated flows is a thin wedge of material progressively passing, over several hundreds of metres, from an unrealistic thickness at the front (<<1 mm) to some tens of centimetres. Simulated deposits form piles which accumulate at the foot of the volcano and are more similar to sand piles than natural pyroclastic deposits. Finally, flows simulated with a frictional rheology are not channelised by the drainage system, but affect all the flanks of the volcano. In addition, their velocity can exceed 150 m s−1, allowing pyroclastic flows to cross interfluves at bends in the valley, affecting areas that would not have been affected in reality and leaving clear downstream areas that would be covered in reality. Instead, a simple empirical law, a constant retarding stress (i.e. a yield strength), involving only one free parameter, appears to be much better adapted for modelling pyroclastic flows. A similar conclusion was drawn for the Socompa debris avalanche simulation (Kelfoun and Druitt, J Geophys Res 110:B12202, 2005).  相似文献   
102.
Porites panamensis is a hermatypic coral present in the eastern Pacific Ocean. Skeletal growth parameters have been reported, but studies of the relationship between annual calcification rates and environmental controls are scarce. In this study, we investigated three aspects of the annual calcification rates of P. panamensis: growth parameters among three P. panamensis populations; the sea surface temperature as a calcification rate control spanning a latitudinal gradient; and calcium carbonate production among three sites. Growth parameters varied among the sites due to the colony growth form. Massive colonies in the north showed a higher calcification rate than encrusting colonies in the south (mean: 1.22–0.49 g CaCO3 · cm?2 · yr?1), where variations in calcification rates were related to growth rate (0.91–0.38 cm · yr?1) rather than to skeletal density differences (overall mean ± SD, 1.31 ± 0.04 g CaCO3 · cm?3). Our results showed a positive linear relationship between annual calcification rates and sea surface temperatures within these P. panamensis populations. Differences were related to distinct oceanographic environments (within and at the entrance of the Gulf of California) with different sea surface temperature regimes and other chemical properties. Different populations calcified under different environmental conditions. Calcium carbonate production was dependent upon the calcification rate and coral cover and so carbonate production was higher in the north (coral cover 12%) than in the south (coral cover 3.5). Thus, the studied sites showed low calcium carbonate production (0.25–0.43 kg CaCO3 · m?2 · yr?1). Our results showed reduced calcification rates, regional temperature regime control over calcification rates, different growth forms, low coral cover and low calcium carbonate production rates in P. panamensis.  相似文献   
103.
Petrographic and geochemical data obtained on the Araguainha impact crater (Goiás/Mato Grosso States, Brazil) indicate the existence of several molten products that originated during impact‐induced congruent melting of an alkali‐granite exposed in the inner part of the central uplift of the structure. Although previous studies have described these melts to some extent, there is no detailed discussion on the petrographic and geochemical variability in the granite and its impactogenic derivatives, and therefore, little is known about the geochemical behavior and mobility of trace elements during its fusion in the central part of the Araguainha crater. This paper demonstrates that the preserved granitoid exposed in the core of the structure is a magnesium‐rich granite, similar to postcollisional, A‐type granites, also found in terrains outside the Araguainha crater, in the Brasília orogenic belt. The molten products are texturally distinct and different from the original rock, but have very similar geochemical composition, making it difficult to separate these lithotypes based on concentrations of major and minor elements. This also applies for trace and rare earth elements (REE), thus indicating a high degree of homogenization during impact‐induced congruent melting under high pressure and postshock temperature conditions. Petrographic observations, along with geochemical data, indicate that melting occurs selectively, where some of the elements are transported with the melt. Simultaneously, there is an effective dissolution of the rock (granite), which leads to entrainment of the most resistant solid phases (intact or partially molten minerals) into the melt. Minerals more resistant to melting, such as quartz and oxides, contribute substantially to a chemical balance between the preserved granite and the fusion products generated during the meteoritic impact.  相似文献   
104.
105.
Abstract– More craters may be discovered in the future, but as it is currently known, the Campo del Cielo crater field is 18 km long by 4 km at its widest point. Such a distribution of craters suggests that the parent meteoroid entered and traversed the atmosphere at a very low angle relative to horizontal. The crater field contains at least 20 small craters produced by the larger fragments of the parent meteoroid. Four of these are explosion analog craters and the rest are penetration funnels. During four field seasons, we have constructed topographic and magnetic maps of four of the penetration funnels as found, and then dug trenches across them to learn their original structures and recover meteorites preserved within them. Structures of these penetration funnels indicate very low angles of impact, i.e., 9–16° relative to horizontal. This supports the idea that the parent meteoroid traversed the atmosphere at a low angle. Data given here for the four penetration funnels include projectile masses, lengths, widths, depths, and estimates of impact angles and azimuths. One of the penetration funnels described here (No. 6) can almost be classified as an explosion analog crater.  相似文献   
106.
Polycyclic aromatic hydrocarbons (PAHs) were measured in the coastal sea surface microlayer (SML), the sub-surface waters (SSW) and the overlying atmosphere in order to investigate the influence of the SML on contaminant enrichment and air-sea exchange. Samples were collected at two contrasting locations of the NW Mediterranean, one urban influenced (off Barcelona, Spain) and another comparatively clean (off Banyuls-sur-Mer, France). Statistical data analysis confirmed the accumulation of PAHs in the SML with respect to the SSW (20.3+/-9.1 vs. 13.1+/-10.0 ng L(-1) in the dissolved phase; 709+/-207 vs. 158+/-111 ng g(-1) in the particulate phase). This accumulation was higher at the contaminated location (Barcelona station) compared with the more pristine one, with PAH enrichments 1.5 and 4.5 times higher for the dissolved and particulate phases, respectively, indicating that the enrichment of PAHs in the SML is dominated by particle transport processes.  相似文献   
107.
The western part of the Ronda peridotite massif (Southern Spain) consists mainly of highly foliated spinel-peridotite tectonites and undeformed granular peridotites that are separated by a recrystallization front. The spinel tectonites are interpreted as volumes of ancient subcontinental lithospheric mantle and the granular peridotites as a portion of subcontinental lithospheric mantle that underwent partial melting and pervasive percolation of basaltic melts induced by Cenozoic asthenospheric upwelling. The Re–Os isotopic signature of sulfides from the granular domain and the recrystallization front mostly coincides with that of grains in the spinel tectonites. This indicates that the Re–Os radiometric system in sulfides was highly resistant to partial melting and percolation of melts induced by Cenozoic lithospheric thermal erosion. The Re–Os isotopic systematics of sulfides in the Ronda peridotites thus mostly conserve the geochemical memory of ancient magmatic events in the subcontinental lithospheric mantle. Os model ages record two Proterozoic melting episodes at ~1.6 to 1.8 and 1.2–1.4 Ga, respectively. The emplacement of the massif into the subcontinental lithospheric mantle probably coincided with one of these depletion events. A later metasomatic episode caused the precipitation of a new generation of sulfides at ~0.7 to 0.9 Ga. These Proterozoic Os model ages are consistent with results obtained for several mantle suites in Central/Western Europe and Northern Africa as well as with the Nd model ages of the continental crust of these regions. This suggests that the events recorded in mantle sulfides of the Ronda peridotites reflect different stages of generation of the continental crust in the ancient Gondwana supercontinent.  相似文献   
108.
We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is:
  相似文献   
109.
时间延迟对劈裂试验条件下岩石凯塞效应的影响   总被引:1,自引:0,他引:1  
谢强  余贤斌 《岩土力学》2010,31(1):46-50
验证了粗晶花岗岩在劈裂试验条件下凯塞效应的存在性。进行了循环加卸载时间间隔分别为2、15d和45d时岩石的声发射试验,讨论了时间延迟对花岗岩凯塞效应的影响。研究结果表明,前期荷载越接近极限强度,岩石的凯塞效应越不明显;凯塞效应随再次加载时间延迟的增加而削弱,在对花岗岩的声发射试验中观察到15d以后岩石的凯塞效应仍然很显著,45d后凯塞效应基本消失。文中同时对试件与加载设备之间的接触状态对声发射试验结果的影响作了初步的定性分析。  相似文献   
110.
Ordovician igneous rocks in the western Acatlán Complex (Olinalá area) of southern Mexico include a bimodal igneous suite that intrudes quartzites and gneisses of the Zacango Unit, and all these rocks were polydeformed and metamorphosed in the amphibolite facies during the Devono-Carboniferous. The Ordovician igneous rocks consist of the penecontemporaneous amphibolites, megacrystic granitoids and leucogranite, the latter dated at ca. 464 Ma. Geochemical and Sm–Nd data indicate that the amphibolites have a differentiated tholeiitic signature, and that its mafic protoliths formed in an extensional setting transitional between within-plate and ocean floor. The amphibolites are variably contaminated by a Mesoproterozoic crustal source, inferred to be the Oaxacan basement exposed in the adjacent terrane. The most primitive samples have εNdt (t = 465 Ma) values significantly below that of the contemporary depleted mantle and were probably derived from the sub-continental lithospheric mantle. The megacrystic granites were most probably derived by partial melting of an arc crustal source (similar to the Oaxacan Complex) and triggered by the ascent of mafic magma from the lithospheric mantle. Sm–Nd isotopic signatures suggest that metasedimentary rocks from Zacango Unit were derived from adjacent Oaxacan Complex. Trace elements relationships (e.g. La/Th vs. Hf) and REE patterns suggest provenance in felsic-intermediate igneous rocks with a calc-alkaline signature. The Ordovician bimodal magmatism is inferred to have resulted from rifting on the southern flank of the Rheic Ocean and is an expression of a major rifting event that occurred along much of the northern Gondwanan margin in the Ordovician.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号