首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   694篇
  免费   30篇
  国内免费   5篇
测绘学   14篇
大气科学   29篇
地球物理   197篇
地质学   298篇
海洋学   50篇
天文学   113篇
综合类   2篇
自然地理   26篇
  2022年   6篇
  2021年   14篇
  2020年   14篇
  2019年   19篇
  2018年   21篇
  2017年   25篇
  2016年   33篇
  2015年   14篇
  2014年   29篇
  2013年   37篇
  2012年   24篇
  2011年   43篇
  2010年   28篇
  2009年   44篇
  2008年   39篇
  2007年   35篇
  2006年   37篇
  2005年   23篇
  2004年   25篇
  2003年   16篇
  2002年   15篇
  2001年   8篇
  2000年   12篇
  1999年   8篇
  1998年   9篇
  1997年   10篇
  1996年   6篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   12篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1979年   3篇
  1976年   5篇
  1971年   3篇
  1970年   4篇
  1969年   2篇
  1964年   2篇
  1956年   2篇
  1920年   2篇
排序方式: 共有729条查询结果,搜索用时 31 毫秒
21.
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using data‐demanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low‐land natural rivers, lake outlets, snow‐fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross‐validation conducted over a 30‐year period indicates that they can be suitably adopted for long‐term analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
22.
We consider the problem of projecting future climate from ensembles of regional climate model (RCM) simulations using results from the North American Regional Climate Change Assessment Program (NARCCAP). To this end, we develop a hierarchical Bayesian space-time model that quantifies the discrepancies between different members of an ensemble of RCMs corresponding to present day conditions, and observational records. Discrepancies are then propagated into the future to obtain high resolution blended projections of 21st century climate. In addition to blended projections, the proposed method provides location-dependent comparisons between the different simulations by estimating the different modes of spatial variability, and using the climate model-specific coefficients of the spatial factors for comparisons. The approach has the flexibility to provide projections at customizable scales of potential interest to stakeholders while accounting for the uncertainties associated with projections at these scales based on a comprehensive statistical framework. We demonstrate the methodology with simulations from the Weather Research & Forecasting regional model (WRF) using three different boundary conditions. We use simulations for two time periods: current climate conditions, covering 1971 to 2000, and future climate conditions under the Special Report on Emissions Scenarios (SRES) A2 emissions scenario, covering 2041 to 2070. We investigate and project yearly mean summer and winter temperatures for a domain in the South West of the United States.  相似文献   
23.
The interpretation of fluvial styles from the rock record is based for a significant part on the identification of different types of fluvial bars, characterized by the geometric relationship between structures indicative of palaeocurrent and surfaces interpreted as indicative of bar form and bar accretion direction. These surfaces of bar accretion are the boundaries of flood‐related bar increment elements, which are typically less abundant in outcrops than what would be desirable, particularly in large river deposits in which each flood mobilizes large volumes of sediment, causing flood‐increment boundary surfaces to be widely spaced. Cross‐strata set boundaries, on the other hand, are abundant and indirectly reflect the process of unit bar accretion, inclined due to the combined effect of the unit bar surface inclination and the individual bedform climbing angle, in turn controlled by changes in flow structure caused by local bar‐scale morphology. This work presents a new method to deduce the geometry of unit bar surfaces from measured pairs of cross‐strata and cross‐strata set boundaries. The method can be used in the absence of abundant flood‐increment bounding surfaces; the study of real cases shows that, for both downstream and laterally accreting bars, the reconstructed planes are very similar to measured bar increment surfaces.  相似文献   
24.
Corner-point gridding is widely used in reservoir and basin modeling but generally yields approximations in the representation of geological interfaces. This paper introduces an indirect method to generate a hex-dominant mesh conformal to 3D geological surfaces and well paths suitable for finite-element and control-volume finite-element simulations. By indirect, we mean that the method first generates an unstructured tetrahedral mesh whose tetrahedra are then merged into primitives (hexahedra, prisms, and pyramids). More specifically, we focus on determining the optimal set of primitives that can be recombined from a given tetrahedral mesh. First, we detect in the tetrahedral mesh all the feasible volumetric primitives using a pattern-matching algorithm (Meshkat and Talmor Int. J. Numer. Meth. Eng. 49(1-2), 17–30 2000) that we re-visit and extend with configurations that account for degenerated tetrahedra (slivers). Then, we observe that selecting the optimal set of primitives among the feasible ones can be formalized as a maximum weighted independent set problem (Bomze et al. 1999), known to be \(\mathcal {N}\mathcal {P}\)-Complete. We propose several heuristic optimizations to find a reasonable set of primitives in a practical time. All the tetrahedra of each selected primitive are then merged to build the final unstructured hex-dominant mesh. This method is demonstrated on 3D geological models including a faulted and folded model and a discrete fracture network.  相似文献   
25.
26.
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号