首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2257篇
  免费   123篇
  国内免费   17篇
测绘学   52篇
大气科学   152篇
地球物理   555篇
地质学   735篇
海洋学   208篇
天文学   332篇
综合类   4篇
自然地理   359篇
  2023年   13篇
  2021年   21篇
  2020年   51篇
  2019年   43篇
  2018年   44篇
  2017年   58篇
  2016年   66篇
  2015年   52篇
  2014年   71篇
  2013年   115篇
  2012年   63篇
  2011年   116篇
  2010年   115篇
  2009年   111篇
  2008年   99篇
  2007年   78篇
  2006年   104篇
  2005年   91篇
  2004年   85篇
  2003年   83篇
  2002年   85篇
  2001年   51篇
  2000年   49篇
  1999年   39篇
  1998年   50篇
  1997年   31篇
  1996年   38篇
  1995年   33篇
  1994年   31篇
  1993年   28篇
  1992年   23篇
  1991年   29篇
  1990年   27篇
  1989年   20篇
  1988年   21篇
  1987年   20篇
  1986年   25篇
  1985年   30篇
  1984年   33篇
  1983年   24篇
  1982年   40篇
  1981年   27篇
  1980年   13篇
  1979年   19篇
  1978年   22篇
  1977年   20篇
  1976年   14篇
  1975年   11篇
  1974年   9篇
  1973年   16篇
排序方式: 共有2397条查询结果,搜索用时 15 毫秒
51.
Summary Water stored in the soil serves as a reservoir for the evapotranspiration (ET) process on land surfaces, therefore knowledge of the soil moisture content is important for partitioning the incoming solar radiation into latent and sensible heat components. There is no remote sensing technique which directly observes the amount of water in this reservoir, however microwave remote sensing at long wavelengths (>10 cm) can give estimates of the moisture stored in the surface 5-cm layer of the soil. This approach is based on the large dielectric contrast between water and dry soil, resulting in emissivity changes from 0.96 for a dry smooth soil to less than 0.6.In this paper, basic relationships between soil moisture and emissivity are described using both theory and observations from various platforms. The ability of the approach to be extended to large regions has been demonstrated in several aircraft mapping experiments, e.g., FIFE, Monsoon 90, Washita 92 and HAPEX Sahel. Some results from Monsoon 90 are presented here. Applications of these soil moisture maps in runoff prediction, rainfall estimation, determining the direct evaporation from the soil surface and serving as a boundary condition for soil profile models are presented.With 10 Figures  相似文献   
52.
53.
An analysis of the spatial and temporal scales of cloud variability and their coupling provided by the results from existing cloud observing systems allows us to reach the following conclusions about the necessary attributes of a cloud monitoring system. (1) Complete global coverage with uniform density is necessary to obtain an unbiased estimate of cloud change and an estimate of the reliability with which that change can be determined. (2) A spatial sampling interval of less than 50 km is required so that cloud cover distributions will generally be homogeneous, or statistically homogeneous, within a sample. (3) A sampling frequency of at least six times a day ensures not only that the diurnal and semi-diurnal cycles are not aliased into long term mean values, but also that changes in them can be monitored. (4) Since estimated climate changes are only evident on a decadal time-scale, unless cloud monitoring is continuous with a record length greater than 10 years and has very high precision ( 1%) instrument calibration with overlapping observations between each pair of instruments, it will not be possible either to detect or to diagnose the effects of cloud changes on the climate.  相似文献   
54.
The Mariánské Lázn complex (MLC) is located in the Bohemian Massif along the north-western margin of the Teplá-Barrandian microplate and consists of metagabbro, amphibolite and eclogite, with subordinate amounts of serpentinite, felsic gneiss and calcsilicate rocks. The MLC is interpreted as a metaophiolite complex that marks the suture zone between the Saxothuringian rocks to the north-west and the Teplá-Barrandian microplate to the south-east. Sm-Nd geochronology of garnet-omphacite pairs from two eclogite samples yields ages of 377±7, and 367±4 Ma. Samples of eclogite and amphibolite do not define a whole rock Sm-Nd isochron, even though there is a large range in Sm/Nd ratio, implying that the suite of samples may not be cogenetic. Eclogites do not have correlated Nd values and initial 87Sr/86Sr ratios. Five of the eight eclogite samples have high Nd values (+10.2 to +7.1) consistent with derivation from a MORB-like source, but variable 87Sr/86Sr ratios (0.7033 to 0.7059) which probably reflect hydrothermal seawater alteration. Three other eclogite samples have lower Nd values (+ 5.4 to –0.8) and widely variable 87Sr/86Sr ratios (0.7033 to 0.7096). Such low Nd values are inconsistent with derivation from a MORB, source and may reflect a subduction or oceanic island basalt component in their source. The MLC is an important petrotectonic element in the Bohemian Massif, providing evidence for Cambro-Ordovician formation of oceanic crust and interaction with seawater, Late Devonian (Frasnian-Famennian) high- and medium-pressure metamorphism related to closure of a Saxothuringian ocean basin, Early Carboniferous (Viséan) thrusting of the Teplá terrane over Saxothuringian rocks and Late Viséan extension.  相似文献   
55.
Radar observations of the asteroid 1580 Betulia, made at a wavelength of 12.6 cm, show a mean radar cross section of 2.2 ± 0.8 km2 and a total spectral bandwidth of 26.5 ± 1.5 Hz. Combining our bandwidth measurements with the optically determined rotation period sets a lower limit to the asteroid's radius of 2.9 ± 0.2 km.  相似文献   
56.
We study the spatial and temporal characteristics of the 3.5 to 30.0 keV emission in a solar flare on April 10, 1980. The data were obtained by the Hard X-ray Imaging Spectrometer aboard the Solar Maximum Mission Satellite. It is complemented in our analysis with data from other instruments on the same spacecraft, in particular that of the Hard X-ray Burst Spectrometer.Key results of our investigation are: (a) Continuous energy release is needed to substain the increase of the emission through the rising phase of the flare, before and after the impulsive phase in hard X-rays. The energy release is characterized by the production of hot (5 × 107 T 1.5 × 108 K) thermal regions within the flare loop structures. (b) The observational parameters characterizing the impulsive burst show that it is most likely associated with non-thermal processes (particle acceleration). (c) The continuous energy release is associated with strong chromospheric evaporation, as evidenced in the spectral line behavior determined from the Bent Crystal Spectrometer data. Both processes seem to stop just before flare maximum, and the subsequent evolution is most likely governed by the radiative cooling of the flare plasma.  相似文献   
57.
58.
It is argued that there is a terrestrial loss of hydrogen as ions which includes the polar wind but extends effectively down to a latitude in the range 45–50° invariant. In daytime and for much of the night-time the flux is close to the limiting value for H+ flow through the topside ionosphere. It is argued that the flux decreases rapidly with increasing solar activity, following the decrease in neutral hydrogen concentration. It has been found that as solar activity increases the Jeans escape flux increases, and the charge exchange escape flux increases until moderate solar activity levels are reached. As solar activity increases from moderate to high levels, the charge exchange escape may decrease again. A new budget for terrestrial hydrogen loss over the solar cycle is given. The global flux of hydrogen ions outward from the ionosphere is comparable with estimates of the plasma sheet loss rates, and this flux, together with some solar wind plasma, is an attractive source for the plasma sheet.The energetic neutrals produced from the charge exchange of ring current ions with thermal-energy neutrals in the exosphere produce the optical emission of the equatorial aurora, which can be related to ion production rates near and above the E-region. The ionization production is adequate to explain the enhancements in ion production observed during magnetic storms at Arecibo.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号