首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
测绘学   3篇
大气科学   1篇
地球物理   20篇
地质学   29篇
天文学   2篇
自然地理   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
  1994年   1篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1972年   1篇
排序方式: 共有56条查询结果,搜索用时 36 毫秒
51.
The conventional spectral analysis method for interpretation of magnetic data assumes stationary spatial series and a white‐noise source distribution. However, long magnetic profiles may not be stationary in nature and source distributions are not white. Long non‐stationary magnetic profiles can be divided into stationary subprofiles following Wiener filter theory. A least‐squares inverse method is used to calculate the scaling exponents and depth values of magnetic interfaces from the power spectrum. The applicability of this approach is demonstrated on non‐stationary synthetic and field magnetic data collected along the Nagaur–Jhalawar transect, western India. The stationarity of the whole profile and the subprofiles of the synthetic and field data is tested. The variation of the mean and standard deviations of the subprofiles is significantly reduced compared with the whole profile. The depth values found from the synthetic model are in close agreement with the assumed depth values, whereas for the field data these are in close agreement with estimates from seismic, magnetotelluric and gravity data.  相似文献   
52.
During dyeing process, industries consume large quantity of water and subsequently produce large volume of wastewater. This wastewater is rich in color and contains different dyes. Orange II is one of them. In this article, metal-impregnated TiO2 P-25 catalyst was used to enhance the photocatalytic degradation of Orange II dye. Photodegradation percentage was followed spectrophotometrically by the measurements of absorbance at λ max = 483 nm. The effect of copper-impregnated TiO2 P-25 photocatalyst for the degradation of Orange II has been investigated in terms of percentage removal of color, chemical oxygen demand (COD) and total organic carbon (TOC). As such 98 % color removal efficiency, 97 % percentage removal of COD and 89 % percentage removal of TOC was achieved with TiO2 P-25/Cu catalysts under typical conditions. Copper-impregnated TiO2 P-25 photocatalyst showed comparatively higher activity than UV/H2O2 homogeneous photodegradation. The relative electrical energy consumption for photocatalytic degradation was considerably lower with TiO2 P-25/Cu photocatalyst than that with homogeneous photodegradation. Transmission electron microscopic analysis was used for catalyst characterization.  相似文献   
53.
The paper examines the predominant fault rupture directivity during large earthquakes in different sectors of the Himalaya which influences strong ground motion and damage scenario. The nature of the faulting of earthquakes vis-à-vis their rupture directivity has been discussed. It is found that the rupture directivity near the Indo-Eurasian plate boundary varies from place to place i.e. either along the strike direction of the faults or at right angles to it. The secondary meizoseismal areas as observed for 1505 Dharchula, 1803 Uttarakhand, 1905 Kangra earthquakes in the Himalaya and 2001 Bhuj earthquake in stable continental region suggest that they are a fairly good indicator of predominant rupture directivity since the latter accentuates the site response up to a longer distance. The resulting larger ground motions, therefore, need to be incorporated in the design of engineering structures by suitable modifications in the BIS code.  相似文献   
54.
In this study, an assessment of seismicity parameters in the northwest Himalaya and adjoining regions using an earthquake catalog from India Meteorological Department covering a period from June 1, 1998 to June 30, 2011 has been carried out. The spatial distributions of seismicity parameters, namely magnitude of completeness, M C, a value, b value, and correlation fractal dimension, D C, are estimated for the studied region. The M C, a, and b values are found to be 2.5, 4.601, and 0.83, respectively. Despite significant gaps, the spatial distributions of a and b values are seen to follow similar trend and are found scattering in between Main Boundary Thrust (MBT) and South Tibet Detachment, adjoining areas of Mahendragarh-Dehradun Fault (MDF), Delhi-Haridwar Ridge (DHR) and Moradabad Fault (MF), and the southern flank of Karakoram Fault and Indus-Tsangpo Suture Zone. The estimated spatial distribution of b and a values is within 90 % of confidence level, thereby indicating non-uniform stress accumulation or higher rock fracturing density in the studied region caused by strong tectonization following several earthquakes. Negative correlation between low b value and high D C is observed predominantly in the region between the MBT and Munsiari Thrust or Main Central Thrust-I of Garhwal and Kumaon Himalaya, adjoining zones of MDF, DHR, and MF of Indo-Gangetic plain, and the eastern flank of the studied region, suggesting the presence of asperities in the zone. At the same time, active creeping process can be inferred in between the MBT and Main Central Thrust of Garhwal Himalaya and the surrounding areas of Shimla region of the Himalayan arc to the northwestern part of the studied region from the positive correlation between b value and D C. The results indicate that the structural heterogeneity caused by different stress accumulation and rock fracturing densities exists due to continuous tectonic adjustments between different geomorphic features of the studied region. An attempt has also been made to classify the studied region into smaller seismic zones by observing the spatial patterns of b value and D C that are fractal properties of the observed seismicity, along with the prevalent fault networks.  相似文献   
55.
Two moderate earthquakes of Mw 5.7 on the first of May and Mw 5.2 on the second of August occurred in the Kishtwar region in the year 2013. Our broadband seismic observatories located in the region recorded these events and the aftershocks. We analyzed these data to understand the seismotectonics of this region. Most of the events were located between 33.03° to 33.29° N latitude and 75.40° to 76.07° E longitude. Focal depths of these shallow earthquakes range from 7 to 12 km and are confined between Panjal Thrust (PT) and Kishtwar Window (KW). Spectral analysis of these events reveals that stress drop, source radius, corner frequency, and moment magnitude varied between 3.3 and 70.1 bars, 0.121 and 3.55 km, 0.397 and 6.06 Hz, and Mw 2.2 and Mw 5.7, respectively. The low stress drop of small-magnitude earthquakes reveals the brittle nature of the upper crust which is coincident with the field observations. The variation of stress drop with magnitude shows positive correlation whereas no such relation was observed between stress drop and depth of focus. The b value calculated (0.83) for the area reveals high stress accumulation within the incompetent rock zones in the area.  相似文献   
56.
Sutar  Anup K.  Verma  Mithila  Bansal  Brijesh K.  Pandey  Ajeet P. 《Natural Hazards》2020,100(1):437-457
Natural Hazards - The occurrence of major natural disasters in recent years has impacted large cities worldwide and boosted the need of assessing urban resilience. As a key factor of resilience,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号