首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
大气科学   14篇
地球物理   14篇
地质学   7篇
海洋学   5篇
自然地理   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2013年   3篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有41条查询结果,搜索用时 20 毫秒
31.
In order to determine if pollutants from the Wollongong-Sydney-Newcastle industrial area in southeastern Australia can be transported northwards, affecting precipitation quality to the north, a preliminary study of fog and rainwater quality was carried out from January to April 1989. Samples were collected from two sites in the state of New South Wales, one in the Barrington Tops and the other near Dorrigo. These samples were analyzed for the cations sodium, calcium, magnesium, potassium, and ammonium, and the anions chloride, nitrate, sulfate, methanesulfonate, formate and acetate, as well as pH and conductivity.The mean pH of fogwater from the two sites was 5.48, compared to 5.62 for rainwater. Fogwater also had concentrations of ions 2–6 times those in rainwater. For both fog and rain the ions sodium, chloride, magnesium, and methanesulfonate at both sites were essentially entirely sea-salt derived, while only 5–50% of potassium, calcium, and sulfate were derived from sea-salt. The acid-base balance was adequately described (r=0.76) by a balance between the acidity contributed by sulfuric and nitric acids, neutralized by the alkalinity of ammonia and (soil dust-derived) calcium carbonate. Comparing this study with others, both within Australia and overseas, fog and rainwater at both sites are not polluted, with acidity only slightly greater than background and concentrations of anthropogenic pollutants very low, and with sea-salt influences accounting for the majority of ionic loading.  相似文献   
32.
A box model of DMS oxidation in the clean, low-NO x marine atmospheric boundary layer has been used to predict the latitude dependence of the aerosol methanesulfonate to non sea-salt sulfate ratio. The observed latitude dependence of this ratio in the Southern Hemisphere can be reproduced reasonably well if the full suite of reactions proposed by Yin et al. (1990a) is employed, and a strong temperature dependence is specified in the rates of decomposition of CH3SO2 and CH3SO3 radicals.  相似文献   
33.
Much research has demonstrated the effectiveness of customary indigenous management at conserving natural resources. However, little is known about integrating customary management with state-level institutions. We present a model case study of collaborative rulemaking based upon customary norms for interacting with resources. We explore the efforts of one Hawai‘i community to create formal state law based on customary norms to understand: (1) What is needed to integrate customary norms into state law? (2) What factors influence this integration? (3) What lessons emerge for similar efforts in other locations? First, we find that implementing some norms of customary management requires fundamental changes to state-level institutions. Second, communities can overcome institutional constraints by identifying substitutes for those customary norms that cannot be implemented directly. And third, formal regulation must be supplemented with educational and social programs. Based on these findings, we offer suggestions to integrate customary and state management in other geographies.  相似文献   
34.
Riverine influences on nearshore oceanic habitats often have detrimental consequences leading to algal blooms and hypoxia. In oligo- to mesotrophic systems, however, nutrient delivery via rivers may stimulate production and even be a vital source of nutrients, as may nutrient supplements from upwelling. We investigated the nutrient content (C, N, P) and stoichiometry of sediment, and several pelagic, benthopelagic and benthic species in the KwaZulu-Natal (KZN) Bight, a narrow shelf area on the south-east coast of South Africa, bordering the Agulhas Current. Three suggested nutrient sources to the bight are the Thukela River in the central region of the bight, upwelling in the northern part and a semi-permanent eddy (Durban Eddy) in the southern part. Elemental content of the various groups studied showed significantly higher values for most groups at the site near the Thukela River. C:P and N:P were highest in the southern part of the bight, and lowest near the Thukela Mouth or at Richards Bay in the north, indicating the latter were the P-richer sites. Sediment organic matter showed lowest elemental content, as expected, and zooplankton stoichiometry was highest compared to all other biotic groups. Environmental heterogeneity played a greater role in organismal C, N and P content and stoichiometry compared to phylogeny, with the exception of the differences in C:P and N:P of zooplankton. From this bight-wide study, the higher elemental content and lower ratios at the Thukela Mouth site supported previous findings of the importance of coastal nutrient sources to the bight ecosystem. Reductions in river flow for water use in the catchment areas may therefore have negative consequences for the productivity of the entire ecosystem.  相似文献   
35.

Background

High salinity and arsenic (As) concentrations in groundwater are widespread problems in the tidal deltaplain of southwest Bangladesh. To identify the sources of dissolved salts and As, groundwater samples from the regional shallow Holocene aquifer were collected from tubewells during the dry (May) and wet (October) seasons in 2012–2013. Thirteen drill cores were logged and 27 radiocarbon ages measured on wood fragments to characterize subsurface stratigraphy.

Results

Drill cuttings, exposures in pits and regional studies reveal a >5 m thick surface mud cap overlying a ~30 m thick upper unit of interbedded mud and fine sand layers, and a coarser lower unit up to 60 m thick dominated by clean sands, all with significant horizontal variation in bed continuity and thickness. This thick lower unit accreted at rates of ~2 cm/year through the early Holocene, with local subsidence or compaction rates of 1–3 mm/year. Most tubewells are screened at depths of 15–52 m in sediments deposited 8000–9000 YBP. Compositions of groundwater samples from tubewells show high spatial variability, suggesting limited mixing and low and spatially variable recharge rates and flow velocities. Groundwaters are Na–Cl type and predominantly sulfate-reducing, with specific conductivity (SpC) from 3 to 29 mS/cm, high dissolved organic carbon (DOC) 11–57 mg/L and As 2–258 ug/L, and low sulfur (S) 2–33 mg/L.

Conclusions

Groundwater compositions can be explained by burial of tidal channel water and subsequent reaction with dissolved organic matter, resulting in anoxia, hydrous ferric oxide (HFO) reduction, As mobilization, and sulfate (SO4) reduction and removal in the shallow aquifer. Introduction of labile organic carbon in the wet season as rice paddy fertilizer may also cause HFO reduction and As mobilization. Variable modern recharge occurred in areas where the clay cap pinches out or is breached by tidal channels, which would explain previously measured 14C groundwater ages being less than depositional ages. Of samples collected from the shallow aquifer, Bangladesh Government guidelines are exceeded in 46 % for As and 100 % for salinity.
  相似文献   
36.
Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics.  相似文献   
37.
The sandwich hybridisation assay (SHA) is a DNA probe‐based method for rapid identification and enumeration of toxic micro‐algae which uses species specific oligonucleotide probes targeted at ribosomal RNA. It is suited to fragile micro‐algal cells which commonly collapse during the fixation stage of sample collection, compromising identification by traditional microscopy. The assay has been available for research for several years, but was validated and accepted for international accreditation for commercial laboratory use in New Zealand in May 2004 (International Accreditation New Zealand: ISO 17025). During the validation of the raphidophyte assay, some discrepancies were noted between SHA cell concentration estimates and traditional light microscope cell counts. Higher SHA estimates were recorded when blooms had collapsed but rRNA was still present in sea water. Conversely, higher traditional cell counts occurred when sample delivery was delayed more than 48 h, presumably owing to degradation of rRNA in the live cultures used for the SHA. SHA cell concentration estimates of the toxic diatom bloom‐former Pseudo‐nitzschia australis were also compared with whole cell format DNA probe counts and traditional microscope counts; SHA counts were comparable for the three methods tested.  相似文献   
38.
Rutile solubility and mobility in supercritical aqueous fluids   总被引:4,自引:0,他引:4  
Experimental and thermodynamic data and the apparent immobility of Ti under metamorphic conditions suggest that rutile is very insoluble in aqueous fluids at upper crustal conditions. New solubility measurements at 1.0–2.93 GPa and 800–1200°C show, however, that under certain pressure and temperature conditions rutile is quite soluble in H2O. Solubilities were estimated from the measured weight loss of a single crystal equilibrated with a known mass of fluid in a piston cylinder apparatus. Measured solubilities in H2O range from 0.15 wt% (wt loss crystal/wt fluid) at 2.93 GPa and 1000°C to 1.9% at 1.0 GPa and 1100°C. Solubility increases with increasing temperature and with decreasing pressure in a manner given by the following fit to the experimental data:
  相似文献   
39.
Vertical distributions of dimethylsulfide (DMS), sulfur dioxide (SO2), aerosol methane-sulfonate (MSA), non-sea-salt sulfate (nss-SO4 2-), and other aerosol ions were measured in maritime air west of Tasmania (Australia) during December 1986. A few cloudwater and rainwater samples were also collected and analyzed for major anions and cations. DMS concentrations in the mixed layer (ML) were typically between 15–60 ppt (parts per trillion, 10–12; 24 ppt=1 nmol m–3 (20°C, 1013 hPa)) and decreased in the free troposphere (FT) to about <1–2.4 ppt at 3 km. One profile study showed elevated DMS concentrations at cloud level consistent with turbulent transport (cloud pumping) of air below convective cloud cells. In another case, a diel variation of DMS was observed in the ML. Our data suggest that meteorological rather than photochemical processes were responsible for this behavior. Based on model calculations we estimate a DMS lifetime in the ML of 0.9 days and a DMS sea-to-air flux of 2–3 mol m–2 d–1. These estimates pertain to early austral summer conditions and southern mid-ocean latitudes. Typical MSA concentrations were 11 ppt in the ML and 4.7–6.8 ppt in the FT. Sulfur-dioxide values were almost constant in the ML and the lower FT within a range of 4–22 ppt between individual flight days. A strong increase of the SO2 concentration in the middle FT (5.3 km) was observed. We estimate the residence time of SO2 in the ML to be about 1 day. Aqueous-phase oxidation in clouds is probably the major removal process for SO2. The corresponding removal rate is estimated to be a factor of 3 larger than the rate of homogeneous oxidation of SO2 by OH. Model calculations suggest that roughly two-thirds of DMS in the ML are converted to SO2 and one-third to MSA. On the other hand, MSA/nss-SO4 2- mole ratios were significantly higher compared to values previously reported for other ocean areas suggesting a relatively higher production of MSA from DMS oxidation over the Southern Ocean. Nss-SO4 2- profiles were mostly parallel to those of MSA, except when air was advected partially from continental areas (Africa, Australia). In contrast to SO2, nss-SO4 2- values decreased significantly in the middle FT. NH4 +/nss-SO4 2- mole ratios indicate that most non-sea-salt sulfate particles in the ML were neutralized by ammonium.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号