首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   9篇
  国内免费   8篇
测绘学   16篇
大气科学   6篇
地球物理   64篇
地质学   91篇
海洋学   12篇
天文学   6篇
综合类   5篇
自然地理   7篇
  2023年   1篇
  2022年   7篇
  2021年   8篇
  2020年   22篇
  2019年   13篇
  2018年   16篇
  2017年   28篇
  2016年   18篇
  2015年   14篇
  2014年   19篇
  2013年   19篇
  2012年   10篇
  2011年   9篇
  2010年   8篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1996年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
111.
To transfer the excess water from Sabzkouh River in central Iran to cities beyond the river, a mechanized tunnel is being excavated. During construction and support installation in the first 100 m, tunnel roof collapse occurred and was followed by ground settlement, so that a cavity was developed in ground surface. The cavity had to be filled in a short time before rainy season, since the water flow through cavity could extend the collapse area in both tunnel roof and ground surface. In order to fill the cavity, some filling methods with different materials consist of in situ soil, lightweight concrete, and pumice aggregate lightweight concrete (PALWC) were suggested. To analyse the load distribution and minimize the costs, a three-dimensional analysis was carried out. Tunnel support system was simulated numerically to further evaluate loading state on support system under different material loadings. Mohr-Coulomb material model was used to allow material failure. The modelling procedure was based on actual construction procedure. Firstly, in situ model was modelled without any excavation and was run to establish pre-stresses and displacement, then slope was supported, the tunnel was excavated and support was installed and finally cavity was simulated. The numerical results show that filling the cavity with soil will result in over loading on the support system and leads to instability of the slope. Other two suggested filling materials have acceptable load on support system, but PALWC was selected as the best filling material having minimum loading and guarantees slope stability.  相似文献   
112.
This research used geospatial data to quantify biodiversity changes and landscape pattern change to track anthropogenic impacts of such changes at the Mouteh Wildlife Refuge (MWR), Isfahan, Iran. Satellite image duration of four decades, LandSat1-5, and IRS-P6 data were used to develop land cover classification maps for 1971, 1987, 1998, and 2011. The number and size of land cover patches, the degree of naturalness, and the diversity indices were calculated and compared for a 40-year period. The results showed an increasing concern with regard to unplanned human activities. Some improvements of the natural landscape also occurred in the core protected zone of the study area. The number and size of land cover patches, the degree of naturalness, and the diversity indices were calculated. Overall changes in natural land use between 1971 and 1998 at MWR showed that the number of patches for natural land use has increased, but it also showed a decrease in 2011. Similar changes were observed for seminatural land use. Within the artificial classes, the number and area of patches were higher and the largest patch occurred in 2011. The maximum variation of diversity is related to the year 2011. The results showed an increasing concern with regard to unplanned human activities. Some improvements of the natural landscape also occurred in the core protected zone of the study area. Remote sensing and geographic information system offers an important means of detecting and analyzing temporal changes occurring in our landscape.  相似文献   
113.
Natural Hazards - Charosa and Dehdasht is a part of folded Zagros that is located in the Kohgiluyeh and Boyer-Ahmad Province in southwestern Iran. This area is covered with several Zagros...  相似文献   
114.
Natural Hazards - Spatial information on flood risk and flood-related crop losses is important in flood mitigation and risk management in agricultural watersheds. In this study, loss of water bound...  相似文献   
115.
Geotechnical and Geological Engineering - Tunnel Boring Machine (TBM) penetration rate prediction is one of the most important problem in tunneling projects. Estimating of Tunnel Boring Machine...  相似文献   
116.

Hot and humid subtropical plateau regions are susceptible to land degradation in the form of weathering and gully erosion. Here, we investigate chemical weathering, gully erosion and cohesiveness through field-based measurements with a view to understand the controlling factors of potential land degradation, in complex river basin of the Chotanagpur plateau region in Eastern India. The layers of controlling factors of gully erosion were developed and prioritized considering boosted regression tree (BRT), alternative decision tree (ADT), particle swarm optimization (PSO) and random forest (RF) algorithms in the R software, and the results of these methods were also validated using receiver operating characteristic (ROC) curves. The spectroscopic analysis was carried out of collected soil samples to measure the degree of chemical weathering and cohesiveness. Furthermore, the climatic elements like temperature and rainfall were also considered for estimating the chemical weathering. The results of the gully erosion models (i.e., BRT, ADT, PSO and RF) show remarkable accuracy with ROC values of 0.93, 0.89, 0.91 and 0.84, respectively. An advanced decision tree model was integrated with the results of degree of chemical weathering and cohesiveness in geographical information system platform. The land degradation map developed from this approach shows that 10.53% of the study area is highly affected, whereas 17.36% area is moderately affected and the rest of the 73.85% area is less affected by land degradation. Our results provide essential information for policy makers in adopting measures for minimizing and controlling the land degradation. Our novel approach is significant to assess land degradation to a large scale.

  相似文献   
117.
A new gravimetric, satellite altimetry, astronomical ellipsoidal boundary value problem for geoid computations has been developed and successfully tested. This boundary value problem has been constructed for gravity observables of the type (i) gravity potential, (ii) gravity intensity (i.e. modulus of gravity acceleration), (iii) astronomical longitude, (iv) astronomical latitude and (v) satellite altimetry observations. The ellipsoidal coordinates of the observation points have been considered as known quantities in the set-up of the problem in the light of availability of GPS coordinates. The developed boundary value problem is ellipsoidal by nature and as such takes advantage of high precision GPS observations in the set-up. The algorithmic steps of the solution of the boundary value problem are as follows:
- Application of the ellipsoidal harmonic expansion complete up to degree and order 360 and of the ellipsoidal centrifugal field for the removal of the effect of global gravity and the isostasy field from the gravity intensity and the astronomical observations at the surface of the Earth.
- Application of the ellipsoidal Newton integral on the multi-cylindrical equal-area map projection surface for the removal from the gravity intensity and the astronomical observations at the surface of the Earth the effect of the residual masses at the radius of up to 55 km from the computational point.
- Application of the ellipsoidal harmonic expansion complete up to degree and order 360 and ellipsoidal centrifugal field for the removal from the geoidal undulations derived from satellite altimetry the effect of the global gravity and isostasy on the geoidal undulations.
- Application of the ellipsoidal Newton integral on the multi-cylindrical equal-area map projection surface for the removal from the geoidal undulations derived from satellite altimetry the effect of the water masses outside the reference ellipsoid within a radius of 55 km around the computational point.
- Least squares solution of the observation equations of the incremental quantities derived from aforementioned steps in order to obtain the incremental gravity potential at the surface of the reference ellipsoid.
- The removed effects at the application points are restored on the surface of reference ellipsoid.
- Application of the ellipsoidal Bruns’ formula for converting the potential values on the surface of the reference ellipsoid into the geoidal heights with respect to the reference ellipsoid.
- Computation of the geoid of Iran has successfully tested this new methodology.
Keywords: Geoid computations; Ellipsoidal approximation; Ellipsoidal boundary value problem; Ellipsoidal Bruns’ formula; Satellite altimetry; Astronomical observations  相似文献   
118.
To quantify the spatial distribution of geochemical elements, the multifractality indices for Zn, Cu, Pt, Pd, Cr, Ni, Co, Pb, and As in lake-sediment samples in the Shining Tree area in the Abitibi area of Ontario are determined. The characterization of multifractal distribution patterns is based on the box-counting moment method and involves three functions: a mass exponent function (q); Coarse Hölder Exponent (q); and fractal dimension spectrum f( (q)). Properties of these functions at different values of q, characterize the spatial distribution of the variable under study. It is shown that the degree of multifractality defined by (1) can be used as a measure of irregularity of geochemical spatial dispersion patterns. The variations of Zn and Cu in the study area are characterized by relatively low degree of multifractality, whereas those for Pt, Pd, Cr, Ni, and Co; and particularly for As and Pb are characterized by higher multifractality indices.In the case of Zn and Cu, singularity spectra are close to a monofractal compared to the ones for As an Pb. The determination of multifractality indices allows us, in a quantitative way, to study the pattern of metal dispersions and link them to different physical processes, such as metal adsorption by organic material or glaciogenic processes.  相似文献   
119.
Similarity between the objects has close association with the geometrical structure and details of the objects. Therefore, in this study, a framework was presented based on the geometric criteria, the fuzzy Membership Functions (MF) and human spatial cognition. To increase the efficiency of MF and for the problem to get closer to reality, 1 K, 2 K, 5 K, 10 K, 25 K, 50 K, and 100 K data were used in this framework. The results showed that the degree of spatial similarity is specific to the objects themselves and their geometric structure. No linear or non-linear relationship could be found between scale changes and degree of spatial similarity of the objects, because the geometry of any object independently affects its degree of similarity to other objects in different scales and sources.  相似文献   
120.
Natural Resources Research - Groundwater is one of the most dynamic and renewable natural resources found in the earth’s crust. A spatio-temporal assessment of groundwater potential zone...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号