首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   9篇
大气科学   5篇
地球物理   30篇
地质学   39篇
海洋学   17篇
天文学   5篇
综合类   1篇
自然地理   2篇
  2021年   13篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1993年   1篇
  1980年   2篇
排序方式: 共有99条查询结果,搜索用时 218 毫秒
61.
Porosity, or void space, of large wood jams in stream systems has implications for estimating wood volumes and carbon storage, the impacts of jams on geomorphic and ecological processes, and instream habitat. Estimating porosity and jam dimensions (i.e. jam volume) in the field is a common method of measuring wood volume in jams. However, very few studies explicitly address the porosity values in jams, how porosity is calculated and assessed for accuracy, and the effect such estimates have on carbon and wood budgets in river corridors. We compare methods to estimate jam porosity and wood volume using field data from four different depositional environments in North America (jam types include small in-channel jams, large channel-margin jams, a large island apex jam, and a large coastal jam), and compare the results with previous studies. We find that visual estimates remain the most time-efficient method for porosity estimation in the field, although they appear to underpredict back-calculated porosity values; the accuracy of jam porosity, and thus wood volume, estimates are difficult to definitively measure. We also find that porosity appears to be scale invariant, dictated mostly by jam type, (which is influenced by depositional processes), rather than the size of the jam. Wood piece sorting and structural organization are likely the most influential properties on jam porosity, and these factors vary according to depositional environment. We provide a framework and conceptual model that uses these factors to demonstrate how modeled jam porosity values differ and give recommendations as a catalyst for future work on porosity of wood jams. We conclude that jam type and size and/or the study goals may dictate which porosity method is the most appropriate, and we call for greater transparency and reporting of porosity methods in future studies. © 2020 John Wiley & Sons, Ltd.  相似文献   
62.
63.
Headwaters are generally assumed to contribute the majority of water to downstream users, but how much water, of what quality and where it is generated are rarely known in the humid tropics. Here, using monthly monitoring in the data scarce (2,370 km2) San Carlos catchment in northeastern Costa Rica, we determined runoff-area relationships linked to geochemical and isotope tracers. We established 46 monitoring sites covering the full range of climatic, land use and geological gradients in the catchment. Regression and cluster analysis revealed unique spatial patterns and hydrologically functional landscape units. These units were used for seasonal and annual Bayesian tracer mixing models to assess spatial water source contributions to the outlet. Generally, the Bayesian mixing analysis showed that the chemical and isotopic imprint at the outlet is throughout the year dominated by the adjacent lowland catchments (68%) with much less tracer influence from the headwaters. However, the headwater catchments contributed the bulk of water and tracers to the outlet during the dry season (>50%) despite covering less than half of the total catchment area. Additionally, flow volumes seemed to be linearly scaled by area maintaining a link between the headwaters and the outlet particularly during high flows of the rainy season. Stable isotopes indicated mean recharge elevations above the mean catchment altitude, which further supports that headwaters were the primary source of downstream water. Our spatially detailed “snap-shot” sampling enabled a viable alternative source of large-scale hydrological process knowledge in the humid tropics with limited data availability.  相似文献   
64.
We report the ratio of the initial carbon available as CO that forms gas‐phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface‐mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume “filamentous” structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain–grain sticking during low‐velocity collisions.  相似文献   
65.
Biomass and primary productivity of picophytoplankton (PP; phytoplankton <3 μm) and larger phytoplankton (>3 μm) were determined during an annual cycle along the salinity gradient in North Carolina’s Neuse River Estuary (NRE), a eutrophic, microtidal estuary. The PP were a major component of total phytoplankton biomass and productivity, contributing ∼35–44% of the total chlorophyll a (Chl a) and 42–55% of the total primary productivity. Chl a and productivity of PP decreased from the upper to lower estuary, although the PP contribution relative to larger phytoplankton remained nearly constant. Significant PP growth occurred in the spring, but PP productivity and biomass were maximal in summer. PP productivity and biomass were positively correlated with temperature and dissolved inorganic phosphorus concentrations, which were maximal in summer due to release from sediments. Biomass and productivity of PP and >3 μm phytoplankton were also positively correlated, suggesting that growth conditions favoring the onset of blooms of larger phytoplankton species will similarly affect PP. High PP productivity and biomass in the NRE support the notion that PP play an important role in the production and eutrophication potentials of this estuary. High PP productivity and biomass have been noted in several other temperate estuaries, all sharing a common feature with the NRE—long residence time. These findings challenge the assumption that PP relative importance should be minimal in eutrophic systems.  相似文献   
66.
Decision making regarding massive evacuation of a population threatened by a probable volcanic eruption is a major problem in crisis management. Such a decision is general on the number of people to be evacuated, available resources and infrastructure, quantity and quality of the escape routes and shelters, and the economic, social and political costs involved in the operation, coupled with the updated information provided by scientists about the forecast of future activity and probable eruption scenarios. Knowing time-lapse between the evacuation decision-making time and the time in which the evacuation is completed is another critical issue that must be carefully considered in densely populated areas. In such areas, it is really important to estimate in advance this time-lapse, as the forecast must be released with enough time to complete all the evacuation process before the destructive manifestations of the eruption begin. In this context, evacuation planning is a crucial component of emergency management. It is common for Emergency Plans to include pre-established strategies. However, an evacuation procedure should be flexible, depending on the above-mentioned timing, and on the decisions, evacuation schemes, environmental characteristics and other factors. In this work, several hazard models such as a lava flow model based on a Monte Carlo algorithm, a pyroclastic density current based on energy cone model, a semi-empirical inversion model to estimate the thickness of ash deposits, and all available information about the El Chión volcano have been used to obtain the area that should be evacuated in case of an eruption. Then, multiple evacuation strategies at El Chichón volcano have been designed, considering not only the characteristics of the eruption forecast, but also environmental factors (e.g., weather conditions) and social factors (e.g., tourism and farming seasons). The variable scale evacuation model has been used to estimate the evacuation time. In the paper, those virtual tools are briefly described as well as the information obtained from the drill of 2009. In addition to the optimization of evacuation under variable conditions and situations, one of the main objectives of this work is to provide a reliable estimation of the mitigation action time, for an Emergency Plan.  相似文献   
67.
Mangroves are sensitive to the root application of Photosystem II inhibiting herbicides and Avicennia marina is more sensitive than other mangroves tested. Seedlings of four mangrove species, including two salt-excreting species (A. marina and Aegiceras corniculatum) and two salt-excluding species (Rhizophora stylosa and Ceriops australis) were treated with a range of concentrations of the herbicides diuron, ametryn and atrazine. Assessment of responses required the separation of seedlings into two groups: those that had only their roots exposed to the herbicides through the water (A. marina and R. stylosa) and those that had both roots and leaves exposed to herbicides through the water (A. corniculatum and C. australis). Salt-excreting species in each group were more susceptible to all herbicide treatments than salt-excluding species, indicating that root physiology was a major factor in the uptake of toxic pollutants in mangroves. Submergence of leaves appeared to facilitate herbicide uptake, having serious implications for seedling recruitment in the field. Each herbicide was ranked by its toxicity to mangrove seedlings from most damaging to least effective, with diuron>ametryn>atrazine. The relative sensitivity of A. marina found in these pot trials was consistent with the observed sensitivity of this species in the field, notably where severe dieback had specifically affected A. marina in the Mackay region, north eastern Australia.  相似文献   
68.
Herbicides, particularly diuron, were correlated with severe and widespread dieback of the dominant mangrove, Avicennia marina (Forsk.) Vierh. var. eucalyptifolia (Val.) N.C. Duke (Avicenniaceae), its reduced canopy condition, and declines in seedling health within three neighbouring estuaries in the Mackay region of NE Australia. This unusual species-specific dieback, first observed in the early 1990s, had gotten notably worse by 2002 to affect >30 km(2) of mangroves in at least five adjacent estuaries in the region. Over the past century, agricultural production has responded well to the demands of increasing population with improvements in farm efficiency assisted by significant increases in the use of agricultural chemicals. However, with regular and episodic river flow events, these chemicals have sometimes found their way into estuarine and nearshore water and sediments where their effects on marine habitats have been largely unquantified. Investigations over the last three years in the Mackay region provide compelling evidence of diuron, and possibly other agricultural herbicides, as the most likely cause of the severe and widespread mangrove dieback. The likely consequences of such dieback included declines in coastal water quality with increased turbidity, nutrients and sediment deposition, as well as further dispersal of the toxic chemicals. The implications of such findings are immense since they describe not only the serious deterioration of protected and beneficial mangrove habitat but also the potential for significant direct and indirect effects on other highly-valued estuarine and marine habitats in the region, including seagrass beds and coral reefs of the Great Barrier Reef lagoon. This article reviews all key findings and observations to date and describes the essential correlative and causative evidence.  相似文献   
69.
70.
This paper presents an automatic system for the elaboration of volcanic hazard maps and scenarios. The methodology used for the generation of both maps is based on the use of numerical simulation of eruptive processes. The system has been developed in a Geographical Information System (GIS) framework, where models for the numerical simulation of different volcanic hazards have been integrated. The user can select in a toolbar one hazard and then decide whether to generate a scenario map (usually with a unique vent) or a hazard map (generally with a broader source area). Once the input parameters are selected, the system automatically generates the corresponding map. The system also incorporates a module to determine the spatial probability of vent opening, as this could be an important parameter for the computation of hazard maps. The tool has been designed in such a way that the inclusion of new numerical models and functionalities is rather easy. Each numerical model is programmed and implemented as an independent program that is launched from the system and, when it finishes the computation, returns the control to the GIS, where the results are shown. This structure allows that further analyses (specifically, risk analyses, that use as an input a hazard or a scenario map), could be also automated inside the system. Additional information, including tutorial and downloadable files can be found in www.gvb-csic.es.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号