首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   7篇
  国内免费   7篇
测绘学   23篇
大气科学   20篇
地球物理   70篇
地质学   148篇
海洋学   15篇
天文学   42篇
综合类   2篇
自然地理   32篇
  2020年   7篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   5篇
  2013年   15篇
  2012年   7篇
  2011年   12篇
  2010年   20篇
  2009年   11篇
  2008年   12篇
  2007年   15篇
  2006年   9篇
  2005年   9篇
  2004年   14篇
  2003年   10篇
  2002年   13篇
  2001年   5篇
  2000年   11篇
  1999年   8篇
  1998年   9篇
  1997年   7篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   7篇
  1989年   5篇
  1984年   4篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1979年   3篇
  1977年   4篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1971年   6篇
  1968年   3篇
  1967年   2篇
  1965年   3篇
  1963年   2篇
  1962年   2篇
  1959年   2篇
  1949年   2篇
  1948年   2篇
  1943年   3篇
  1940年   3篇
  1912年   3篇
排序方式: 共有352条查询结果,搜索用时 46 毫秒
61.
We conducted the first quantitative assessment of coral breakage along a gradient of diving activities in Hong Kong, the most densely populated city in southern China. A survey of six 1 × 25 m transects at seven sites revealed a total of 81 broken corals, among which 44% were branching, 44% plate-like and 12% massive. There were 3–19 broken colonies per site. At most study sites, the percentage of broken corals exceeded the recommended no-action threshold of 4%, suggesting that management intervention is justified. There was a significant positive correlation between the number of broken coral colonies and the number of divers visiting the site. The branching Acropora and the plate-like Montipora suffered from much higher frequency of damage than their relative abundance, raising the concern that the cumulative impact of such differential susceptibility to breakage may affect coral community composition.  相似文献   
62.
63.
We report on a 6‐year nearshore bathymetric dataset from the Danube Delta (Romanian Black Sea coast) that comprises 16 km of erosive, stable and accumulative low‐lying micro‐tidal beaches northward of Sf. Gheorghe arm mouth. Two to three two‐dimensional longshore sandbars exhibit a net multi‐annual cyclic (2.8–5.5 years) offshore migration (20–50 m yr?1) in a similar way to other coasts worldwide. Bar morphology and behavior on the sediment‐rich accretionary (dissipative) sector differ substantially from that on the erosive (intermediate) sector. Shoreface slope is the most important factor controlling sandbar number and behavior. It determines different wave‐breaking patterns in the surf zone, translated into different offshore sediment transport and bar zone widths along the study site. Additionally, sediment availability, as a result of the distance from the arm mouth and of the long‐term evolution of the coast, controls the sandbar volume variability. These are all ultimately reflected in the variations of sandbar migration rates and cycle periods. A non‐dimensional morpho‐sedimentary parameter is finally presented, which expresses the bar system change potential as offshore sediment transport potential across the bar zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
64.
This paper describes a quantitative methodology for deriving optimal exploration target zones based on a probabilistic mineral prospectivity map. The methodology is demonstrated in the Rodalquilar mineral district in Spain. A subset of known occurrences of mineral deposits of the type sought was considered discovered and then used as training data, and a map of distances to faults/fractures and three band ratio images of hyperspectral data were used as layers of spatial evidence in weights-of-evidence (WofE) modeling of mineral prospectivity in the study area. A derived posterior probability map of mineral deposit occurrence showing non-violation of the conditional independence assumption and having the highest prediction rate was then put into an objective function in simulated annealing in order to derive a set of optimal exploration focal points. Each optimal exploration focal point represents a pixel or location within a circular neighborhood of pixels with high posterior probability of mineral deposit occurrence. Buffering of each optimal exploration focal point, based on proximity analysis, resulted in optimal exploration target zones. Many of these target zones coincided spatially with at least one occurrence of mineral deposit of the type sought in the subset of cross-validation (i.e., presumed undiscovered) mineral deposits of the type sought. The results of the study showed the usefulness of the proposed methodology for objective delineation of optimal exploration target zones based on a probabilistic mineral prospectivity map.  相似文献   
65.
Single zircon ages determined by ion microprobe (SHRIMP II) for granitoid gneisses from the southern slope of the Baga Bogd massif (Gobi-Altai, southern Mongolia) reveal several episodes of zircon growth, ranging from late Palaeoproterozoic to late Cambrian. The oldest events are documented by a zircon crystallization age for a gneiss protolith at 1519 ± 11 Ma and by a xenocrystic zircon from a dark grey augen-gneiss yielding an age of c. 1701 Ma. Discrete igneous events are recorded in granite-gneisses with protolith emplacement ages of 983 ± 6, 956 ± 3 and 954 ± 8 Ma. These ages provide the first record of early Neoproterozoic magmatic activity in this region. A much younger and discrete magmatic event is recorded by several dioritic to granitic orthogneisses which are tectonically interlayered with the older gneisses and have protolith emplacement ages between 502 and 498 Ma. These late Cambrian granitoids of calc-alkaline affinity are likely to have been emplaced along an active continental margin and suggest that the Baga Bogd Precambrian crustal fragment was either docked against the southward (present-day coordinates) growing margin of the CAOB or was a large enough crustal entity to develop an arc along its margin. We speculate that the Precambrian gneisses of this massif may be part of a crustal fragment rifted off the Tarim Craton.  相似文献   
66.
67.
The oceanic anoxic event at the Cenomanian?CTuronian transition (OAE-2) is a worldwide phenomenon related with variations in atmosphere?Cocean dynamics. This event coincides with significant changes in the palaeoenvironment determining marine mass extinction affecting numerous groups of organisms. Ichnological analysis of the Cenomanian?CTuronian boundary interval has been conducted in three selected sections from different ecological and depositional settings in the western Tethys. Indeed, a brief overview of existing knowledge in this domain highlights increasing recognition of the usefulness of trace fossils in the characterization of even minor-scale deep-sea environmental changes linked to sea-level dynamics. At the study sites, variations in ichnological features, including trace fossil composition, tiering patterns and ichnofabrics, can be related to fluctuations in bottom- and pore-water oxygenation during the Cenomanian?CTuronian interval. In the Barnasiówka section (Polish Outer Carpathians), changes between oxic/dysoxic??characterized by Chondrites, Planolites and even Thalassinoides??and euxinic conditions, without trace fossils or only with Chondrites, can be explained by variations in gravity flows influencing the benthic habitat. In the El Chorro and Hedionda sections (Betic Cordillera), longer anoxic intervals during the OAE-2, characterized by the absence of trace fossils, are interrupted by shorter dysaerobic and aerobic sub-events associated with Chondrites, Palaeophycus, Planolites, Thalassinoides, Trichichnus and Zoophycos, but showing significant differences between these two sections related to the palaeogeographically differentiated influence of upwelling conditions.  相似文献   
68.
High-pressure and ultrahigh-pressure (UHP) eclogite-bearing metamorphic assemblages in the North Tianshan of Kyrgyzstan are known from the Aktyuz and Makbal areas, where eclogites and garnet amphibolites are associated with continental rocks such as granitoid gneisses in Aktyuz and shallow-water clastic (passive margin?) metasediments in Makbal. We present the first Lu–Hf isotope data for an eclogite and two garnet amphibolite samples from the two metamorphic terranes which, combined with petrological analysis, tightly constrain the age of high-pressure metamorphism in the Kyrgyz North Tianshan. A five-point isochron for an Aktyuz eclogite sample provides a Lu–Hf age of 474.3 ± 2.2 Ma, and a four-point isochron on a Makbal sample corresponds to 470.1 ± 2.5 Ma. A prograde, subduction-related path is inferred for both samples with peak P–T conditions ranging from 1.4 to 1.6 GPa and 610–620 °C. A further Makbal sample provided a significantly older Lu–Hf age of 486 ± 5.4 Ma, most likely due to late alteration in the sample (late addition of unradiogenic Hf). We conclude that garnet growth in all three samples occurred around ca. 474 Ma and that these rocks likely experienced UHP metamorphism contemporaneously. Our results support previous geochronological evidence for an Early Ordovician collision belt in the North Tianshan and allow refinement of a tectonic model involving subduction of thinned continental crust to considerable depth along the margin of a small microcontinent.  相似文献   
69.
Oceanic arcs are commonly cited as primary building blocks of continents, yet modern oceanic arcs are mostly subducted. Also, lithosphere buoyancy considerations show that oceanic arcs (even those with a felsic component) should readily subduct. With the exception of the Arabian–Nubian orogen, terranes in post-Archean accretionary orogens comprise < 10% of accreted oceanic arcs, whereas continental arcs compose 40–80% of these orogens. Nd and Hf isotopic data suggest that accretionary orogens include 40–65% juvenile crustal components, with most of these (> 50%) produced in continental arcs.Felsic igneous rocks in oceanic arcs are depleted in incompatible elements compared to average continental crust and to felsic igneous rocks from continental arcs. They have lower Th/Yb, Nb/Yb, Sr/Y and La/Yb ratios, reflecting shallow mantle sources in which garnet did not exist in the restite during melting. The bottom line of these geochemical differences is that post-Archean continental crust does not begin life in oceanic arcs. On the other hand, the remarkable similarity of incompatible element distributions in granitoids and felsic volcanics from continental arcs is consistent with continental crust being produced in continental arcs.During the Archean, however, oceanic arcs may have been thicker due to higher degrees of melting in the mantle, and oceanic lithosphere would be more buoyant. These arcs may have accreted to each other and to oceanic plateaus, a process that eventually led to the production of Archean continental crust. After the Archean, oceanic crust was thinner due to cooling of the mantle and less melt production at ocean ridges, hence, oceanic lithosphere is more subductable. Widespread propagation of plate tectonics in the late Archean may have led not only to rapid production of continental crust, but to a change in the primary site of production of continental crust, from accreted oceanic arcs and oceanic plateaus in the Archean to primarily continental arcs thereafter.  相似文献   
70.
Increased source strength, streamer length and dense spatial coverage of seismic reflection profiles of the SEISMARMARA Leg 1 allow to image the deep structure of the marine North Marmara Trough (NMT) on the strike-slip North Anatolian Fault (NAF) west of the destructive Izmit 1999 earthquake. A reflective lower crust and the Moho boundary are detected. They appear upwarped on an E-W profile from the southern Central Basin eastwards, towards more internal parts of the deformed region. Thinning of the upper crust could use a detachment suggested from an imaged dipping intracrustal reflector that would allow upper crustal material to be dragged from beneath it and above the lower crust, accounting for the extensional component but also southwest motion of the southern margin of the NMT. Sections across the eastern half of the NMT, crossing the Cinarcik and Imrali basins, reveal several faults that are active reaching into the basement and have varying strike and proportions of normal and strike-slip displacement. They might be viewed as petals of a large scale negative flower-structure that spreads over a width of 30 km at surface and is rooted deeper in the lithosphere. Under the Central Basin a very thick sediment infill is revealed and its extensional bounding faults are active and imaged as much as 8 km apart down to 6 km depth. We interpret them as two deep-rooted faults encompassing a foundering basement block, rather than being merely pulled-apart from a jog in a strike-slip above a décollement. The deep-basin lengthening would account for only a modest part of the proposed 60 km finite motion since 4 Myr along the same direction oblique to the NMT that sidesteps the shear motion from its two ends. Thus differential motion occurred much beyond the deep basins, like subsidence involving the NMT bounding faults and the intracrustal detachments. The complex partitioned motion localized on active faults with diverse natures and orientations is suggested to represent the overburden deformation induced from horizontal plane simple shear occurring in depth at lithospheric scale, and in front of the North Anatolian Fault when it propagated through the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号