首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   31篇
  国内免费   4篇
测绘学   4篇
大气科学   36篇
地球物理   145篇
地质学   273篇
海洋学   45篇
天文学   57篇
综合类   3篇
自然地理   29篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   8篇
  2018年   12篇
  2017年   15篇
  2016年   21篇
  2015年   14篇
  2014年   17篇
  2013年   32篇
  2012年   29篇
  2011年   24篇
  2010年   29篇
  2009年   39篇
  2008年   20篇
  2007年   30篇
  2006年   30篇
  2005年   33篇
  2004年   36篇
  2003年   28篇
  2002年   29篇
  2001年   14篇
  2000年   12篇
  1999年   18篇
  1998年   9篇
  1997年   5篇
  1996年   9篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有592条查询结果,搜索用时 15 毫秒
111.
Silicic pumices formed during explosive volcanic eruptions are faithful recorders of the state of the magma in the conduit, close to or at the fragmentation level. We have characterized four types of pumices from the non-welded rhyolitic Kos Plateau Tuff, which erupted 161,000 years ago in the East Aegean Arc, Greece. The dominant type of pumice (>90 vol.%) shows highly elongated tubular vesicles. These tube pumices occur throughout the eruption. Less common pumice types include: (1) “frothy” pumice (highly porous with large, sub-rounded vesicles), which form 5–10 vol.% of the coarsest pyroclastic flow deposits, (2) dominantly “microvesicular” and systematically crystal-poor pumices, which are found in early erupted, fine-grained pyroclastic flow units, and are characterized by many small (<50 μm in diameter) vesicles and few mm-sized, irregular voids, (3) grey or banded pumices, indicating the interaction between the rhyolite and a more mafic magma, which are found throughout the eruption sequence and display highly irregular bubble shapes. Except for the grey-banded pumices, all three other types are compositionally identical and were generated synchronously as they are found in the same pyroclastic units. They, therefore, record different conditions in the volcanic conduit leading to variable bubble nucleation, growth and coalescence. A total of 74 pumice samples have been characterized using thin section observation, SEM imagery, porosimetry, and permeametry. We show that the four pumice types have distinct total and connected porosity, tortuosity and permeability. Grey-banded pumices show large variations in petrophysical characteristics as a response to mingling of two different magmas. The microvesicular, crystal-poor, pumices have a bimodal bubble size distribution, interpreted as reflecting an early heterogeneous bubble nucleation event followed by homogeneous bubble nucleation close to fragmentation. Finally, the significant differences in porosity, tortuosity and permeability in compositionally identical tube and frothy pumices are the result of variable shear rates in different parts of the conduit. Differential shear rates may be the result of either: (1) pure shear, inducing a vertical progression from frothy to tube and implying a relatively thick fragmentation zone to produce both types of pumices at the same time or (2) localized simple shear, inducing strongly tubular vesicles along the wall and near-spherical bubbles in the centre of the conduit and not necessarily requiring a thick fragmentation zone.  相似文献   
112.
The properties of waves able to propagate in a relativistic pair plasma are at the basis of the interpretation of several astrophysical observations. For instance, they are invoked in relation to radio emission processes in pulsar magnetospheres and to radiation mechanisms for relativistic radio jets. In such physical environments, pair plasma particles probably have relativistic, or even ultrarelativistic, temperatures. Besides, the presence of an extremely strong magnetic field in the emission region constrains the particles to one-dimensional motion: all the charged particles strictly move along magnetic field lines.
We take anisotropic effects and relativistic effects into account by choosing one-dimensional relativistic Jűttner–Synge distribution functions to characterize the distribution of electrons and/or positrons in a relativistic, anisotropic pair plasma. The dielectric tensor, from which the dispersion relation associated with plane wave perturbations of such a pair plasma is derived, involves specific coefficients that depend on the distribution function of particles. A precise determination of these coefficients, using the relativistic one-dimensional Jűttner–Synge distribution function, allows us to obtain the appropriate dispersion relation. The properties of waves able to propagate in anisotropic relativistic pair plasmas are deduced from this dispersion relation. The conditions in which a beam and a plasma, both ultrarelativistic, may interact and trigger off a two-stream instability are obtained from this same dispersion relation. Two astrophysical applications are discussed.  相似文献   
113.
114.
 To test the potential of heat flux prospecting in active volcanic areas using shallow temperature data taken along vertical profiles, we carried out two thermal profile surveys, one not far from Yasur cone on Tanna Island, and another inside the caldera of Ambrym (New Hebrides arc, southwestern Pacific). The basic steady heat flux of internal volcanic origin was determined, taking into account both conductive and convective heat transfers. At both locations there exists, over small distances, significant differences in the heat flux. These differences correspond to shallow sources of heat. The use of a network of vertical profiles allowed: (a) heat flux mapping; (b) location of shallow volcanic heat sources; and (c) observation of the detailed structure of the heat release at quiescent but active volcanoes. Received: 18 July 1997 / Accepted: 13 May 1998  相似文献   
115.
In the analysis of geographical spillovers, a commonly accepted hypothesis is that the different actors of innovation need to be physically closed to one another because the transfer of tacit knowledge implies frequent face-to-face relations. This hypothesis is put under closer examination in this paper. The first section analyses the need for economic agents to be closely located to develop research and innovative activities, starting with the analysis of their need for co-ordination and using some case studies. Based on the example of three French regions, the second section examines the importance given by the local development policies to geographical proximity in order to support the rapid development of local networks favouring innovation. In both sections, nonlocal relations appear as a key factor to develop innovation. As a conclusion, nonlocal relations should be encouraged by local development policies in the same way as local relations.  相似文献   
116.
The capability of RADARSAT synthetic aperture radar (SAR) for the purpose of snow-line/accumulation area mapping for a temperate alpine glacier is examined. In agreement with other orbital C-band SAR studies, RADARSAT can discriminate between firn and bare ice facies. Limited observations are reported with respect to the electromagnetic variability of the ice facies in the ablation area, but they are inconclusive. Operational considerations are discussed with respect to reconciling the uncertainties of late-summer weather and their possible impact on the dielectric and scattering properties of the glacier surface. Vagaries associated with other glacier settings, mass balance states and their associated facies configurations are discussed including the difficulty of using the transient snow-line to define the equilibrium line and the lower extent of the accumulation area for glaciers where superimposed ice may form.
The radar remote-sensing reconnaissance of equilibrium line altitude (ELA) and accumulation area ratio (AAR) for estimating glacier mass balance requires serious consideration in those instances where traditional ground measurements used in the direct glaciological method are absent. However, with respect to the ELA, such estimates can vary depending on the accuracy of the reference digital elevation information. Moreover, for many glacier configurations, where mass balance variations due to altitude are influenced or in some cases completely masked by local balance variations, defining the ELA may be an irreconcilable problem. Using the AAR may be more robust in this regard. It is further determined that the total error inherent in the reconnaissance method would have serious implications for the confident estimation of mass balance normals and climate-related trends if the method were to be utilized over the longer term.  相似文献   
117.
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so‐called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high‐fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow‐based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land‐surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.  相似文献   
118.
Most groundwater models simulate stream‐aquifer interactions with a head‐dependent flux boundary condition based on a river conductance (CRIV). CRIV is usually calibrated with other parameters by history matching. However, the inverse problem of groundwater models is often ill‐posed and individual model parameters are likely to be poorly constrained. Ill‐posedness can be addressed by Tikhonov regularization with prior knowledge on parameter values. The difficulty with a lumped parameter like CRIV, which cannot be measured in the field, is to find suitable initial and regularization values. Several formulations have been proposed for the estimation of CRIV from physical parameters. However, these methods are either too simple to provide a reliable estimate of CRIV, or too complex to be easily implemented by groundwater modelers. This paper addresses the issue with a flexible and operational tool based on a 2D numerical model in a local vertical cross section, where the river conductance is computed from selected geometric and hydrodynamic parameters. Contrary to other approaches, the grid size of the regional model and the anisotropy of the aquifer hydraulic conductivity are also taken into account. A global sensitivity analysis indicates the strong sensitivity of CRIV to these parameters. This enhancement for the prior estimation of CRIV is a step forward for the calibration and uncertainty analysis of surface‐subsurface models. It is especially useful for modeling objectives that require CRIV to be well known such as conjunctive surface water‐groundwater use.  相似文献   
119.
In bedload transport modelling, it is usually presumed that transported material is fed by the bed itself. This may not be true in some mountain streams where the bed can be very coarse and immobile for the majority of common floods, whereas a finer material, supplied by bed‐external sources, is efficiently transported during floods, with marginal morphological activities. This transport mode was introduced in an earlier paper as ‘travelling bedload’. It could be considered an extension of the washload concept of suspension, applied to bedload transport in high‐energy, heavily armoured streams. Since this fine material is poorly represented in the bed surface, standard surface‐based approaches are likely to strongly underestimate the true transport in such streams. This paper proposes a simple method to account for travelling bedload in bedload transport estimations. The method is tested on published datasets and on a typical Alpine stream, the Roize (Voreppe, France). The results, particularly on active streams that experience greater transport than expected from the grain sizes of their bed material, reinforce the necessity of accounting for the ‘travelling bedload concept’ in bedload computation. The method relevance is discussed regarding varying flood magnitudes, geomorphic responses and eventual anthropic origin of the ‘travelling bedload’ phenomena. To conclude, this paper considers how to compute bedload transport for a wide range of situations, ranging from sediment‐starved cases to the general mobile bed alluvial case, including the intermediate situation of external source supply on armoured bed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
120.
The physical partitioning of Hg into different grain size fractions of till is predominantly controlled by the primary bedrock mineralogy, the distance of glacial transport, and the relative stability of cinnabar (HgS) in the soil weathering environment. At sites located short distances down-ice from bedrock cinnabar mineralization, the highest Hg concentrations in unoxidized till were measured in the sand- and granule-sized fractions reflecting the abundance of cinnabar in those size ranges. Similar partitioning was measured in oxidized till as cinnabar was found to be relatively resistant to postglacial weathering. Discrete clay-sized cinnabar grains obtained from the unoxidized till were viewed under the scanning electron microscope and suggest that the terminal grade of cinnabar is in the clay-sized range. In till collected from areas barren of cinnabar mineralization, the highest Hg levels were found in the clay-sized fraction which is attributed to the high adsorption of Hg by clay minerals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号