首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   49篇
  国内免费   6篇
测绘学   33篇
大气科学   32篇
地球物理   152篇
地质学   243篇
海洋学   38篇
天文学   89篇
综合类   1篇
自然地理   43篇
  2024年   2篇
  2023年   5篇
  2022年   3篇
  2021年   15篇
  2020年   11篇
  2019年   18篇
  2018年   24篇
  2017年   23篇
  2016年   30篇
  2015年   23篇
  2014年   22篇
  2013年   35篇
  2012年   21篇
  2011年   31篇
  2010年   21篇
  2009年   37篇
  2008年   25篇
  2007年   31篇
  2006年   27篇
  2005年   26篇
  2004年   22篇
  2003年   16篇
  2002年   17篇
  2001年   10篇
  2000年   13篇
  1999年   7篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1976年   4篇
  1973年   2篇
  1965年   2篇
  1964年   3篇
排序方式: 共有631条查询结果,搜索用时 937 毫秒
91.
Conventional (one-dimensional) chemostratigraphy of marine carbonates assesses the chemical archive of individual stratigraphic sections and their correlation in space and time. Whereas this approach has shown to be of value when linking isobathymetric domains, usually characterised by similar facies, more caution is needed when correlations are extended across different physiographic settings and hence different facies belts. Here, the spatial geochemical record of Pennsylvanian platform-margin-to-basin transects across a bathymetric range of about 800 m is documented and discussed in a process-oriented context. Particularly, the presence of layered palaeo-water masses and their potential control on slope facies distribution and geochemical properties requires attention. Whereas Carboniferous thermo- and/or chemo-clines most likely affected depth-related slope facies zonation, it was facies change and hence, variances in porosity–permeability properties, that controlled differential early burial diagenetic alteration. Specifically, the lower-slope related breccia facies is characterised by higher volumes of early burial carbonate cements. This implies that these sediments entered the shallow-burial domain with a considerable open pore space and gave way to an increased rock:fluid ratio. Whereas the δ13C record is invariant with bathymetry, the more diagenesis-sensitive δ18O proxy, records pronounced shifts observed across major facies boundaries. From this it is concluded that although the primary controlling factor of slope facies distribution with depth is probably palaeoceanographic in nature, it is differential rock:fluid ratios that control the first-order, spatial shifts in δ18O composition. These findings show that one-dimensional chemostratigraphy will severely underestimate the complexity of three-dimensional (bathymetric) data sets across platform margins. This is of relevance for the interpretation of the geochemical archive of fossil carbonate platforms in general.  相似文献   
92.
93.
The fresh groundwater lenses (FGLs) of small islands can be highly vulnerable to climate change impacts, including sea‐level rise (SLR). Many real cases of atoll or sandy islands involve two‐layer hydrogeological conceptualizations. In this paper, the influential factors that affect FGLs in two‐layer small islands subject to SLR are investigated. An analytical solution describing FGLs in circular islands, composed of two geological layers, is developed for the simplified case of steady‐state and sharp‐interface conditions. An application of the developed model is demonstrated to estimate the FGL thickness of some real‐world islands by comparison with existing FGL thickness data. Furthermore, numerical modelling is applied to extend the analysis to consider dispersion effects and to confirm comparable results for both cases. Sensitivity analyses are used to assess the importance of land‐surface inundation caused by SLR, relative to other parameters (i.e. thickness of aquifer layers, hydraulic conductivity, recharge rate and land‐surface slope) that influence the FGL. Dimensionless parameters are used to generalize the findings. The results demonstrate that land‐surface inundation has a considerable impact on a FGL influenced by SLR, as expected, although the FGL volume is more sensitive to recharge, aquifer thickness and hydraulic conductivity than SLR impacts, considering typical parameter ranges. The methodology presented in this study provides water resource managers with a rapid‐assessment tool for evaluating the likely impacts of SLR and accompanying LSI on FGLs.  相似文献   
94.
The bonded discrete element model (DEM) is a numerical tool that is becoming widely used when studying fracturing, fragmentation, and failure of solids in various disciplines. However, its abilities to solve elastic problems are usually overlooked. In this work, the main features of the 2D bonded DEM which influence Poisson's ratio and Young's modulus, and accuracy when solving elastic boundary value problems, are investigated. Outputs of numerical simulations using the 2D bonded DEM, the finite element method, a hyper elasticity analysis, and the distinct lattice spring model (DLSM) are compared in the investigation. It is shown that a shear interaction (local) factor and a geometric (global) factor are two essential elements for the 2D bonded DEM to reproduce a full range of Poisson's ratios. It is also found that the 2D bonded DEM might be unable to reproduce the correct displacements for elastic boundary value problems when the represented Poisson's ratio is close to 0.5 or the long-range interaction is considered. In addition, an analytical relationship between the shear stiffness ratio and the Poisson's ratio, derived from a hyper elasticity analysis and applicable to discontinuum-based models, provides good agreement with outputs from the 2D bonded DEM and DLSM. Finally, it is shown that the selection of elastic parameters used the 2D bonded DEM has a significant effect on fracturing and fragment patterns of solids.  相似文献   
95.
Evaporation from wet-canopy (\(E_\mathrm{C}\)) and stem (\(E_\mathrm{S}\)) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, \(E_\mathrm{C}\) and \(E_\mathrm{S}\) dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in \(E_\mathrm{C}\) and assume (with few indirect data) that \(E_\mathrm{S}\) is generally \({<}2\%\) of total wet-canopy evaporation. We test these common assumptions for the first time with a spatially-distributed network of in-canopy meteorological monitoring and 45 surface temperature sensors in an urban Pinus elliottii tree row to estimate \(E_\mathrm{C}\) and \(E_\mathrm{S}\) under the assumption that crown surfaces behave as “wet bulbs”. From December 2015 through July 2016, 33 saturated crown periods (195 h of 5-min observations) were isolated from storms for determination of 5-min evaporation rates ranging from negligible to 0.67 \(\hbox {mm h}^{-1}\). Mean \(E_\mathrm{S}\) (0.10 \(\hbox {mm h}^{-1}\)) was significantly lower (\(p < 0.01\)) than mean \(E_\mathrm{C}\) (0.16 \(\hbox {mm h}^{-1}\)). But, \(E_\mathrm{S}\) values often equalled \(E_\mathrm{C}\) and, when scaled to trunk area using terrestrial lidar, accounted for 8–13% (inter-quartile range) of total wet-crown evaporation (\(E_\mathrm{S}+E_\mathrm{C}\) scaled to surface area). \(E_\mathrm{S}\) contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2–17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.  相似文献   
96.
This paper presents an examination of the timescale of phase transition behaviour of a series of salts known to cause damage to wall paintings and other cultural property. The rate of deliquescence and crystallisation of single salts (nitromagnesite and halite) under different RH regimes, and the extent to which this was affected when mixed with other salts (niter, nitratite and gypsum), was investigated. The study was conducted using simple conventional techniques (mass measurements over time) and also using an innovative new method: timelapse video imaging with online data annotation. The results demonstrate the synergy gained from combining video imaging with environmental data in reference to time in the study of salt phase changes: where it revealed new information concerning the kinetics of deliquescence and crystallisation. The implications of these results for the implementation of environmental control measures within historic buildings are discussed.
Alison SawdyEmail:
  相似文献   
97.
The Gemmi fault is a prominent NW–SE striking lineament that crosses the Gemmi Pass in the central Swiss Alps. A multidisciplinary investigation of this structure that included geological mapping, joint profiling, cathodoluminescence and scanning electron microscopy, stable isotope measurements, luminescence- and U-TH-dating, 3D ground penetrating radar (GPR) surveying and trenching reveals a history of fault movements from the Miocene to the Holocene. The main fault zone comprises a 0.5–3 m thick calcite cataclasite formed during several cycles of veining and brittle deformation. Displaced Cretaceous rock layers show an apparent dextral slip of 10 m along the fault.A detailed study of a small sediment-filled depression that crosses the fault provides evidence for a post-glacial reactivation of the fault. A trench excavated across the fault exposed a Late-Glacial-age loess layer and late Holocene colluvial-like slope-wash deposits that showed evidence for fault displacement of a few centimeters, indicating a recent strike-slip reactivation of the fault. Focal mechanisms of recent instrumentally recorded earthquakes are consistent with our findings that show that the fault at the Gemmi Pass, together with other parallel faults in this area, may be reactivated in today's stress field. Taking together all the observations of its ancient and recent activity, the Gemmi fault can be viewed as a window through geological space and time.  相似文献   
98.
River discharge and nutrient measurements are subject to aleatory and epistemic uncertainties. In this study, we present a novel method for estimating these uncertainties in colocated discharge and phosphorus (P) measurements. The “voting point”‐based method constrains the derived stage‐discharge rating curve both on the fit to available gaugings and to the catchment water balance. This helps reduce the uncertainty beyond the range of available gaugings and during out of bank situations. In the example presented here, for the top 5% of flows, uncertainties are shown to be 139% using a traditional power law fit, compared with 40% when using our updated “voting point” method. Furthermore, the method is extended to in situ and lab analysed nutrient concentration data pairings, with lower uncertainties (81%) shown for high concentrations (top 5%) than when a traditional regression is applied (102%). Overall, for both discharge and nutrient data, the method presented goes some way to accounting for epistemic uncertainties associated with nonstationary physical characteristics of the monitoring site.  相似文献   
99.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   
100.
Fault-controlled hydrothermal dolomitization in tectonically complex basins can occur at any depth and from different fluid compositions, including ‘deep-seated’, ‘crustal’ or ‘basinal’ brines. Nevertheless, many studies have failed to identify the actual source of these fluids, resulting in a gap in our knowledge on the likely source of magnesium of hydrothermal dolomitization. With development of new concepts in hydrothermal dolomitization, the study aims in particular to test the hypothesis that dolomitizing fluids were sourced from either seawater, ultramafic carbonation or a mixture between the two by utilizing the Cambrian Mount Whyte Formation as an example. Here, the large-scale dolostone bodies are fabric-destructive with a range of crystal fabrics, including euhedral replacement (RD1) and anhedral replacement (RD2). Since dolomite is cross-cut by low amplitude stylolites, dolomitization is interpreted to have occurred shortly after deposition, at a very shallow depth (<1 km). At this time, there would have been sufficient porosity in the mudstones for extensive dolomitization to occur, and the necessary high heat flows and faulting associated with Cambrian rifting to transfer hot brines into the near surface. While the δ18Owater and 87Sr/86Sr ratios values of RD1 are comparable with Cambrian seawater, RD2 shows higher values in both parameters. Therefore, although aspects of the fluid geochemistry are consistent with dolomitization from seawater, very high fluid temperature and salinity could be suggestive of mixing with another, hydrothermal fluid. The very hot temperature, positive Eu anomaly, enriched metal concentrations, and cogenetic relation with quartz could indicate that hot brines were at least partially sourced from ultramafic rocks, potentially as a result of interaction between the underlying Proterozoic serpentinites and CO2-rich fluids. This study highlights that large-scale hydrothermal dolostone bodies can form at shallow burial depths via mixing during fluid pulses, providing a potential explanation for the mass balance problem often associated with their genesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号