首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   63篇
  国内免费   56篇
测绘学   30篇
大气科学   109篇
地球物理   139篇
地质学   397篇
海洋学   73篇
天文学   76篇
综合类   14篇
自然地理   74篇
  2024年   1篇
  2023年   9篇
  2022年   12篇
  2021年   27篇
  2020年   22篇
  2019年   22篇
  2018年   42篇
  2017年   51篇
  2016年   32篇
  2015年   35篇
  2014年   54篇
  2013年   72篇
  2012年   39篇
  2011年   57篇
  2010年   48篇
  2009年   54篇
  2008年   41篇
  2007年   30篇
  2006年   37篇
  2005年   32篇
  2004年   29篇
  2003年   23篇
  2002年   33篇
  2001年   21篇
  2000年   20篇
  1999年   9篇
  1998年   10篇
  1997年   4篇
  1996年   1篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1958年   1篇
  1947年   1篇
排序方式: 共有912条查询结果,搜索用时 15 毫秒
71.
The aim of this work is to study the temporal dynamics of rhizome epiphytes and sessile animals living on the rhizomes of the seagrass Posidonia oceanica in the east of Tunisia. Surveys were conducted in October 2009, and in January, April and August 2010 on a fringing reef located in Chebba. Rhizomes were sampled by SCUBA diving at three stations. Samples were examined with a microscope to estimate the cover of macroinvertebrate and macroalgal organisms on the top 10 cm of each rhizome. Results revealed a high diversity of epiphytes on P. oceanica rhizomes with a dominance of red and brown algae, ascidians, and bryozoans. Distinct temporal changes were observed in Oued Lafrann, with a high January cover (winter period) for all groups. These winter increases can be attributed to: (i) the low phenological parameters of P. oceanica in winter that reduce the effects of shading, (ii) life cycles of the epiphytes and invertebrates, (iii) water motion and (iv) grazing.  相似文献   
72.
The flowering characteristics of plant species of economic interest and the influence of climate on them are of great importance considering the implications for fruit setting and the final harvest: Olive is one of the typical species of the Mediterranean habitat. We have investigated the timing of olive full flowering during the anthesis period and flowering intensity over a period of 20 years (1990–2009), in three major cultivation areas of the Mediterranean basin: Italy, Spain and Tunisia. The importance of these characteristics from a bioclimatic point of view is considered. The biological behaviour was studied to determine its main relationships with temperature and water availability, considering also the different sub-periods and the bio-climatic variations during the study period. The flowering dates and pollen emissions show different behaviours for the Spanish monitoring area in comparison with the other two olive cultivation areas. In the Italian and Tunisian areas, the flowering period over the last decade has become earlier by about 5 and 7 days, respectively, in comparison to the previous decade. Moreover, pollen emissions have decreased in Perugia (Italy) and Zarzis (Tunisia) over the period of 2000–2009, while in Cordoba (Spain), they showed their highest values from 2005 to 2009. The climate analysis has shown an increase in temperature, which results in an increase in the growing degree days for the growth of the olive flower structures, particularly in the more northern areas monitored. Although the olive tree is a parsimonious water consumer that is well adapted to xeric conditions, the increase in the potential evapotranspiration index over the last decade in the Italian and Tunisian olive areas might create problems for olive groves without irrigation, with a negative influence on the flowering intensity. Overall, in all of these Mediterranean monitoring areas, the summer water deficit is an increasingly more important parameter in comparison to the winter parameters, which confirms that the winter period is not as limiting as the summer period for olive tree cultivation in these Mediterranean areas.  相似文献   
73.
Selected characteristics of dry spells and associated trends over India during the 1951–2007 period is studied using two gridded datasets: the Indian Meteorological Department (IMD) and the Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of the water resources (APHRODITE) datasets. Two precipitation thresholds, 1 and 3 mm, are used to define a dry day (and therefore dry spells) in this study. Comparison of the spatial patterns of the dry spell characteristics (mean number of dry days, mean number of dry spells, mean and maximum duration of dry spells) for the annual and summer monsoon period obtained with both datasets agree overall, except for the northernmost part of India. The number of dry days obtained with APHRODITE is larger for this region compared to IMD, which is consistent with the smaller precipitation for the region in APHRODITE. These differences are also visible in the spatial patterns of mean and maximum dry spell durations. Analysis of field significance associated with trends, at the level of 34 predefined meteorological subdivisions over the mainland, suggests better agreement between the two datasets in positive trends associated with number of dry days for the annual and summer monsoon period, for both thresholds. Important differences between the two datasets are noted in the field significance associated with the negative trends. While negative trends in annual maximum duration of dry spells appear field significant for the desert regions according to both datasets, they are found field significant for two regions (Punjab and South Interior Karnataka) for the monsoon period for both datasets. This study, in addition to providing information on the spatial and temporal patterns associated with dry spell characteristics, also allows identification of regions and characteristics where the two datasets agree/disagree.  相似文献   
74.
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.  相似文献   
75.
This paper discusses the role and relevance of the shared socioeconomic pathways (SSPs) and the new scenarios that combine SSPs with representative concentration pathways (RCPs) for climate change impacts, adaptation, and vulnerability (IAV) research. It first provides an overview of uses of social–environmental scenarios in IAV studies and identifies the main shortcomings of earlier such scenarios. Second, the paper elaborates on two aspects of the SSPs and new scenarios that would improve their usefulness for IAV studies compared to earlier scenario sets: (i) enhancing their applicability while retaining coherence across spatial scales, and (ii) adding indicators of importance for projecting vulnerability. The paper therefore presents an agenda for future research, recommending that SSPs incorporate not only the standard variables of population and gross domestic product, but also indicators such as income distribution, spatial population, human health and governance.  相似文献   
76.
In public debate surrounding climate change, scientific uncertainty is often cited in connection with arguments against mitigative action. This article examines the role of uncertainty about future climate change in determining the likely success or failure of mitigative action. We show by Monte Carlo simulation that greater uncertainty translates into a greater likelihood that mitigation efforts will fail to limit global warming to a target (e.g., 2 °C). The effect of uncertainty can be reduced by limiting greenhouse gas emissions. Taken together with the fact that greater uncertainty also increases the potential damages arising from unabated emissions (Lewandowsky et al. 2014), any appeal to uncertainty implies a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.  相似文献   
77.
Li  Luqi  Derudder  Ben  Shen  Wei  Kong  Xiang 《Journal of Geographical Systems》2022,24(1):115-140
Journal of Geographical Systems - There has been a proliferation of studies trying to explain the driving forces behind the formation and evolution of intercity corporate networks. Previous...  相似文献   
78.
The Messinian Salinity Crisis (MSC) resulted from a significant multi-phase drop and subsequent reflooding of the Mediterranean Sea from 5.96 to 5.33 Ma. Well-developed drainage networks, characterized by step-like profiles and abrasion platforms, are associated to this event. The Ebro Continental Margin (Western Mediterranean) presents an additional complexity since the capture of the drainage of the adjacent subaerial Ebro Basin took place sometime prior to the Messinian stage. Using 3D seismic reflection data, this work provides new insights into the origin of the step-like profile of the Messinian erosional surface (MES) and timing of the capture of the subaerial Ebro Basin. The results obtained indicate a sedimentary-active continental slope and delta progradation during Middle-Late Miocene, in a normal regressive context associated to a pre-Messinian proto-Ebro River. The mature development attained by the Messinian Ebro River network during the MSC corroborates that the capture of the Ebro Basin occurred prior to the MSC. The configuration of the clinoforms below the MES suggests that deltaic sediments of the Messinian Paleo-Ebro River deposited during the Tortonian and initial Messinian sea-level drawdown. The MES formed at the top of the Tortonian Highstand, where a fluvial network was deeply carved, and in the topset region of the Messinian Falling Stage Systems Tract, where minor erosion occurred. Fluvial deposits are outstandingly preserved on the main valleys of the MES. Therefore, the step-like profile of the MES was not created during Zanclean inundation, but during the latest stages of the main Messinian sea-level fall and lowstand.  相似文献   
79.
The multilayered Djeffara aquifer system, south-eastern Tunisia, has been intensively used as a primary source to meet the growing needs of the various sectors (drinking, agricultural and industrial purposes). The analysis of groundwater chemical characteristics provides much important information useful in water resources management. Detailed knowledge of the geochemical evolution of groundwater and assessing the water quality status for special use are the main objective of any water monitoring study. An attempt has been made for the first time in this region to characterize aquifer behavior and appreciate the quality and/or the suitability of groundwater for drinking and irrigation purposes. In order to attend this objective, a total of 54 groundwater samples were collected and analyzed during January 2008 for the major cations (sodium, calcium, magnesium and potassium), anions (chloride, sulfate, bicarbonate), trace elements (boron, strontium and fluoride), and physicochemical parameters (temperature, pH, total dissolved salts and electrical conductivity). The evolution of chemical composition of groundwater from recharge areas to discharge areas is characterized by increasing sodium, chloride and sulfate contents as a result of leaching of evaporite rock. In this study, three distinct chemical trends in groundwater were identified. The major reactions responsible for the chemical evolution of groundwater in the investigated area fall into three categories: (1) calcite precipitation, (2) gypsum and halite dissolution, and (3) ion exchange. Based on the physicochemical analyses, irrigation quality parameters such as sodium absorption ratio (SAR), percentage of sodium, residual sodium carbonate, residual sodium bicarbonate, and permeability index (PI) were calculated. In addition, groundwater quality maps were elabortaed using the geographic information system to delineate spatial variation in physico-chemical characteristics of the groundwater samples. The integration of various dataset indicates that the groundwater of the Djeffara aquifers of the northern Gabes is generally very hard, brackish and high to very high saline and alkaline in nature. The water suitability for drinking and irrigation purposes was evaluated by comparing the values of different water quality parameters with World Health Organization (WHO) guideline values for drinking water. Piper trilinear diagram was constructed to identify groundwater groups where the relative major anionic and cationic concentrations are expressed in percentage of the milliequivalent per liter (meq/l), and it was demonstrated that the majority of the samples belongs to SO4–Cl–Ca–Na, Cl–SO4–Na–Ca and Na–Cl hydrochemical facies. As a whole, all the analyzed waters from this groundwater have revealed that this water is unsuitable for drinking purposes when comparing to the drinking water standards. Salinity, high electric conductivity, sodium adsorption ratio and sodium percentages indicate that most of the groundwater samples are inappropriate for irrigation. The SAR vary from medium (S2) to very high (S4) sodicity. Therefore, the water of the Djeffara aquifers of the northern Gabes is dominantly of the C4–S2 class representing 61.23 % of the total wells followed by C4–S3 and C4–S4 classes at 27.27 and 11.5 % of the wells, respectively. Based on the US Salinity Classification, most of the groundwater is unsuitable for irrigation due to its high salt content, unless certain measures for salinity control are undertaken.  相似文献   
80.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. New insights into the characterisation of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. In the phosphate mining area (El Guettar–M’Dilla basin: Southwestern Tunisia), several diseases have been known as cancer, respiratory, allergies, cardiovascular, dental fluorosis, stress, etc. These diseases are directly related with the installation of the industrial sector of the CPG (from 1896) and the deforestation and the ecosystem degradation (fauna and flora).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号