首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   1篇
大气科学   7篇
地球物理   11篇
地质学   6篇
海洋学   3篇
  2014年   1篇
  2010年   1篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2001年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1956年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
21.
Abstract. Abyssal microfloral succession induced by experimental organic degradation was investigated. Notable changes in amounts and compositions of short-chain (C9-20) sediment fatty acids were observed, which indicated the shift of sediment microflora. Biomarker fatty acids for methanotrophs and sulfate-reducing bacteria dominated. Resultant fatty acid compositions were most closely related to those from a nearby methane seep harboring a dense Calyptogena colony; the clams were also seen in close vicinity of the deployed organic mass. These observations suggest that the organic degradation on the bathyal seafloor stimulates the formation of methanotrophic and thio­trophic microflora, resulting in the formation of a methane-seep-type benthic community.  相似文献   
22.
In order to estimate the benefit attributable to alleviating global warming for a kind of cost–benefit analysis of global warming mitigation, global warming impacts were quantitatively evaluated for a pathway of unmitigated CO2 emissions and three pathways to stabilize the atmospheric CO2 concentration at different levels, keeping unchanged the assumed conditions on population and GDP growths, although the GDP losses which will be caused due to the warming mitigation for the three stabilization pathways are taken into account. The evaluation results show that global warming will reduce the world total number of deaths caused by thermal stress owing to the large decrease in the cold-related deaths; it will increase the water stress in some regions, while it will decrease the stress in other regions; reductions in CO2 emissions will decrease the probability of THC collapse and terrestrial biodiversity loss; and it will enhance an increase in the wheat production potential.  相似文献   
23.
High temperature calorimetric measurements of the enthalpies of solution in molten if2 PbO · B2O3 of α- and γ-Fe2SiO4 and α-, β-, and γ-Co2SiO4 permit the calculation of phase relations at high pressure and temperature. The reported triple point involving α-, β-, and γ-Co2SiO4 is confirmed to represent stable equilibrium. The curvature in the α?β phase boundary in Co2SiO4 and of an α?γ boundary in Fe2SiO4 at high temperature is explained in part by the effects of compressibility and thermal expansion, but better agreement with the observed phase diagram is obtained when one considers the effect of small amounts of cation disorder in the spinel and/or modified spinel phases. The calculated ΔH0 and ΔS0 values for the α?β, α?γ, and β?γ transitions show that enthalpy and en changes both vary strongly in the series Mg, Fe, Co, and Ni, and are of equal importance in determining the stability relations. The disproportionation of Fe2SiO4 and Co2SiO4 spinel to rocksalt plus stishovite is calculated to occur in the 170–190 kbar region; cation disorder and/or changes in wüstite stoichiometry can affect the P?T slope. The calorimetric data for CoSiO3 and FeSiO3 are in good agreement with the observed phase boundary for pyroxene formation from olivine and quartz. The decomposition of pyroxene to spinel and stishovite at pressures near the coesite-stishovite transition is predicted in both iron and cobalt systems. The use of calorimetric data, obtained from small samples of high pressure phases, is very useful in predicting equilibrium phase diagrams in the 50–300 kbar range.  相似文献   
24.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   
25.
The electrical conductivity of three polymorphs of Mn2GeO4 was measured under high pressures in the temperature range of 300–1200 K. It was found that the electrical conductivity increases discontinuously due to the transformation both from olivine structure (α) to modified spinel structure (β) and from β to strontium plumbate structure (δ). The amount of discontinuous change is about one half order of magnitude from α to β and one third order of magnitude from β to δ at 1200 K. In order to see the effect of the presence of iron ions, the electrical conductivity of the solid solution of (Mn0.9Fe0.1)2GeO4 was also measured. It was found that at low temperatures, where impurity conduction may be dominant, the solid solution is more conductive than the pure Mn2GeO4, but at high temperature no significant differences were observed between the solid solution and pure Mn2GeO4 in all polymorphs.A phase transformation from modified spinel structure to strontium plumbate structure is considered to be one of the plausible transformations occurring at a depth around 650 km in the earth's mantle. These experiments suggest that if this kind of transformation occurs in the mantle, some degrees of discontinuous change in electrical conductivity may be expected around 650 km.  相似文献   
26.
27.
The system iron-enstatite-water was investigated at pressures around 5 GPa and at temperatures ranging from 1000 to 1200°C, using several different kinds of starting materials. Quenched samples showed the coexistence of iron, olivine and pyroxene. Synthesis of the Fe-containing olivine in the run products proves that a series of reactions, Fe + H2O → FeHx + FeO and FeO + MgSiO3 → (Mg, Fe)2SiO4, have taken place. Spherical “balls of iron” were observed in the 1200°C run. This strongly indicates that the melting temperature of iron decreased by ~ 500 K by the possible dissolution of hydrogen. Following geophysical implications are derived from these experimental results. If water was retained in the hydrous minerals in the primordial material, the iron-water reaction is expected to occur throughout the core-formation process. The reaction product FeHx will melt and then sink to form a proto-core and iron oxide will be dissolved in the Earth's mantle. The dissolution of hydrogen in the Earth's core is a natural consequence of the core-formation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号