首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   7篇
  国内免费   2篇
测绘学   35篇
大气科学   12篇
地球物理   34篇
地质学   70篇
海洋学   4篇
天文学   18篇
综合类   1篇
自然地理   5篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   8篇
  2017年   14篇
  2016年   14篇
  2015年   10篇
  2014年   10篇
  2013年   15篇
  2012年   8篇
  2011年   6篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   8篇
  2006年   10篇
  2005年   3篇
  2004年   7篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1991年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1963年   2篇
  1962年   1篇
  1961年   1篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
21.
22.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
23.
Air temperature and snow cover variability are sensitive indicators of climate change. This study was undertaken to forecast and quantify the potential streamflow response to climate change in the Jhelum River basin. The implications of air temperature trends (+0.11°C/decade) reported for the entire north-west Himalaya for past century and the regional warming (+0.7°C/decade) trends of three observatories analyzed between last two decades were used for future projection of snow cover depletion and stream flow. The streamflow was simulated and validated for the year 2007-2008 using snowmelt runoff model (SRM) based on in-situ temperature and precipitation with remotely sensed snow cover area. The simulation was repeated using higher values of temperature and modified snow cover depletion curves according to the assumed future climate. Early snow cover depletion was observed in the basin in response to warmer climate. The results show that with the increase in air temperature, streamflow pattern of Jhelum will be severely affected. Significant redistribution of streamflow was observed in both the scenarios. Higher discharge was observed during spring-summer months due to early snowmelt contribution with water deficit during monsoon months. Discharge increased by 5% 40% during the months of March to May in 2030 and 2050. The magnitude of impact of air temperature is higher in the scenario-2 based on regional warming. The inferences pertaining to change in future streamflow pattern can facilitate long term decisions and planning concerning hydro-power potential, waterresource management and flood hazard mapping in the region.  相似文献   
24.
Traditionally seismic design of structures supported on piled raft foundation is performed by considering fixed base conditions, while the pile head is also considered to be fixed for the design of the pile foundation. Major drawback of this assumption is that it cannot capture soil-foundation-structure interaction due to flexibility of soil or the inertial interaction involving heavy foundation masses. Previous studies on this subject addressed mainly the intricacy in modelling of dynamic soil structure interaction(DSSI) but not the implication of such interaction on the distribution of forces at various elements of the pile foundation and supported structure. A recent numerical study by the authors showed significant change in response at different elements of the piled raft supported structure when DSSI effects are considered. The present study is a limited attempt in this direction, and it examines such observations through shake table tests. The effect of DSSI is examined by comparing dynamic responses from fixed base scaled down model structures and the overall systems. This study indicates the possibility of significant underestimation in design forces for both the column and pile if designed under fixed base assumption. Such underestimation in the design forces may have serious implication in the design of a foundation or structural element.  相似文献   
25.
In the present study, prediction of agricultural drought has been addressed through prediction of agricultural yield using a model based on NDVI-SPI. It has been observed that the meteorological drought index SPI with different timescale is correlated with NDVI at different lag. Also NDVI of current fortnight is correlated with NDVI of previous lags. Based on the correlation coefficients, the Multiple Regression Model was developed to predict NDVI. The NDVI of current fortnight was found highly correlated with SPI of previous fortnight in semi-arid and transitional zones. The correlation between NDVI and crop yield was observed highest in first fortnight of August. The RMSE of predicted yield in drought year was found to be about 17.07 kg/ha which was about 6.02 per cent of average yield. In normal year, it was 24 kg/Ha denoting about 2.1 per cent of average yield.  相似文献   
26.
The East Kolkata Wetlands is a unique resource recovery system. The Ramsar Convention recognized it as a ‘Wetland of International Importance’ in August 2002. However, the long-term resource exploitation and land use changes in the dynamic ecosystem have resulted in non-linear environmental responses. This is an attempt using open source remote sensing datasets to capture the spatio-temporal transformation of the wetland resulting from various anthropogenic activities. Landsat MSS and TM imageries of 1973, 1980, 1989, 2001 and 2010 were classified using Maximum Likelihood Classifier to monitor the wetland change; however, to study wetland dynamics, the post-classification wetland change detection maps have been generated for two temporal phases, i.e. 1973–1989 and 1989–2010. This study finds that the area under wetlands has reduced comprehensively in the past 40 years due to the conversion of wetlands into various other uses such as urban expansion of the Kolkata metropolitan city.  相似文献   
27.
The bank sediments along the extremely meandered Dhansiri River channel, a south bank tributary of the mighty Brahmaputra River, with erosion potentiality have been investigated to evaluate its certain geotechnical characteristics. The study has shown that the bank sediments are basically composed of CL and ML types of soil. These types of sediments are very much prone to liquefaction which in turn related to erosion susceptibility. The bank stability analysis has differentiated the studied stretch into unstable, at risk and stable zones. Most of the erosion affected zones along the channel reach under study are located within the unstable or at risk zones. The field study around Butalikhowa, Barguriagaon, Golaghat and Duchmuagaon areas along the channel with active erosion activity has supported our contention and practical utility of the present study. It is expected that such type of study will help in providing certain inevitable baseline information for various channel management practices for this extremely flood prone areas of Northeast India.  相似文献   
28.
Determination of the peak thermal condition is vital in order to understand tectono-thermal evolution of the Himalayan belt. The Lesser Himalayan Sequence (LHS) in the Western Arunachal Pradesh, being rich in carbonaceous material (CM), facilitates the determination of peak metamorphic temperature based on Raman spectroscopy of carbonaceous material (RSCM). In this study, we have used RSCM method of Beyssac et al. (J Metamorph Geol 20:859–871, 2002a) and Rahl et al. (Earth Planet Sci Lett 240:339–354, 2005) to estimate the thermal history of LHS and Siwalik foreland from the western Arunachal Pradesh. The study indicates that the temperature of 700–800 °C in the Greater Himalayan Sequence (GHS) decreases to 650–700 °C in the main central thrust zone (MCTZ) and decreases further to <200 °C in the Mio-Pliocene sequence of Siwaliks. The work demonstrates greater reliability of Rahl et al.’s (Earth Planet Sci Lett 240:339–354, 2005) RSCM method for temperatures >600 and <340 °C. We show that the higher and lower zones of Bomdila Gneiss (BG) experienced temperature of ~600 °C and exhumed at different stages along the Bomdila Thrust (BT) and Upper Main Boundary Thrust (U.MBT). Pyrolysis analysis of the CM together with the Fission Track ages from upper Siwaliks corroborates the RSCM thermometry estimate of ~240 °C. The results indicate that the Permian sequence north of Lower MBT was deposited at greater depths (>12 km) than the upper Siwalik sediments to its south at depths <8 km before they were exhumed. The 40Ar/39Ar ages suggest that the upper zones of Se La evolved ~13–15 Ma. The middle zone exhumed at ~11 Ma and lower zone close to ~8 Ma indicating erosional unroofing of the MCT sheet. The footwall of MCTZ cooled between 6 and 8 Ma. Analyses of PT path imply that LHS between MCT and U.MBT zone falls within the kyanite stability field with near isobaric condition. At higher structural level, the temperatures increase gradually with PT conditions in the sillimanite stability field. The near isothermal (700–800 °C) condition in the GHS, isobaric condition in the MCTZ together with Tt path evidence of GHS that experienced relatively longer duration of near peak temperatures and rapid cooling towards MCTZ, compares the evolution of GHS and inverted metamorphic gradient closely to channel flow predictions.  相似文献   
29.
Geographical Information System (GIS) have proved to be an efficient tool in the delineation of drainage pattern for water resources management and its planning. In this study, GIS and image processing techniques have been adopted for the identification of morphological features and analyzing the properties of the upper catchment of Kosi River. The basin area includes the high-altitude Himalayan Mountains, including Mount Everest and Kanchenjunga peaks. This basin is the main contributing area for devastating floods in 2008 in the Bihar state of India. The catchment can be divided into three sub-catchments, namely, Arun, Sunkosi, and Tamur. A morphometric analysis shows the nature of drainage in the upper catchment of Kosi River and some causes behind the high-intensity floods by comparing the properties of these three sub-catchments. It shows that the highest-order drains are present in both Arun and Sunkosi and the length of the first-order drains is very high (6,088 km) due to the absence of vegetation and also due to the barren/rocky surface which has tremendous potential to generate runoff. Due to highest mean channel gradient in Tamur sub-basin compared to others, it has the highest flow kinetic velocity. Also, the results show that the Arun sub-catchment has the highest potential to contribute runoff and sediment. One of the major causes behind the high intensity of floods is that the sub-catchments Arun and Sunkosi have a nearly equal time of concentration, so they contribute their peak floods at the same time and hence double the intensity of floods.  相似文献   
30.
Pixel-based or texture-based classification technique individually does not yield an appropriate result in classifying the high spatial resolution remote sensing imagery since it comprises textured and non-textured regions. In this study, Hölder exponents (HE) and variance (VAR) are used together to transform the image for measuring texture. A threshold is derived to segment the transformed image into textured and non-textured regions. Subsequently, the original image is extracted into textured and non-textured regions using this segmented image mask. Afterward, extracted textured region is classified using ISODATA classification algorithm considering HE, VAR, and intensity values of individual pixel of textured region. And extracted non-textured region of the image is classified using ISODATA classification algorithm. In case of non-textured region, HE and VAR value of individual pixel is not considered for classification for significant textural variation is not found among different classes. Consequently, the classified outputs of non-textured and textured regions that are generated independently are merged together to get the final classified image. IKONOS 1 m PAN images are classified using the proposed algorithm, and the classification accuracy is more than 88%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号