首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   1篇
  国内免费   4篇
测绘学   1篇
大气科学   1篇
地球物理   26篇
地质学   75篇
海洋学   2篇
天文学   4篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   8篇
  2017年   6篇
  2016年   11篇
  2015年   1篇
  2014年   8篇
  2013年   15篇
  2012年   6篇
  2011年   8篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有109条查询结果,搜索用时 156 毫秒
61.
The potential use of fibres in a number of geotechnical engineering applications is gaining more interest in the geotechnical community. A select application consists of the improvement of soft grounds to mitigate their problematic shear strength characteristics. Extensive experimental work has been reported on the response/behaviour of fibre-reinforced clay (FRC) and was recently complemented by several strength prediction models. The effectiveness of these models has not been thoroughly evaluated yet. The objectives of this study are to (1) quantify the model uncertainty of a newly developed FRC model that is aimed exclusively at predicting the “undrained” shear strength of FRCs, (2) combine the model uncertainty with other conventional sources of uncertainty to assess the reliability levels that are inherent in the ultimate limit state design of spread footings that rest on a top FRC layer underlain by weaker natural soft clay, and (3) recommend factors of safety that would ensure a target reliability level for these footings. Results indicate that the traditional safety factor of 3 should be used with caution as it may not be sufficient to yield the desired level of reliability, particularly for smaller footings, lower applied stresses, larger scales of fluctuation, and larger target reliability indices.  相似文献   
62.
63.

The behavior of retaining walls in geosynthetic reinforced soil is complex and requires studies and research to understand the mechanisms of rupture, the behavior of the reinforcements in the soil and the behavior of the main elements of the system: reinforcement-wall-soil. Several researches have been done on the use of geosynthetics as backfill massive reinforcement material (experimental studies, numerical analysis, reduced models …). This parametric study was conducted to investigate the influence of modular blocks type on the behavior of reinforced soil segmental walls. A 3.6 m high wall is composed of modular blocks of earth sand reinforced with four geogrid layers was modeled. The properties of materials, the wall geometry, and the boundary conditions will be explained later. The finite difference computer program FLAC3D was used in this study. The results of this numerical study allowed deducing the importance of this parameter. The type of modular blocks has significant effect to decrease the values of lateral displacements of the wall and decreased tensile stress values in the layers of geogrid.

  相似文献   
64.
Geotechnical and Geological Engineering - Two-layered cohesive slopes are encountered in geotechnical applications involving embankments, dams, levees, and natural cut slopes. The reliability of...  相似文献   
65.
Soil shearing resistance is very important while designing various structures which have direct contact with soil, for example, sheet piles, piles, retaining walls, reinforced earth structures and shallow foundations. Even though designers use empirical values for their design, it is very important to obtain more accurate values for soil–solid materials shearing resistance. In this work, laboratory tests have been carried out to investigate the effect of roughness interface and texture models on friction angle between cohesive soils and steel, as well as abrasive paper material, using direct shear tests. All tests were carried out under consolidated drained shear conditions. The behavior at the soils–solid interface was found to vary according to surface roughness. It also seems that the type of material (steel or paper of abrasive) used does not have a major influence on the shear strength. As far as roughness is concerned, friction behavior is likely to be generally classified into three failure modes, namely full sliding at the interface, shear failure within the soil, and a mixed behavior where interface sliding and shear deformation of the soil specimen proceed simultaneously. However, for the second mode, the shear strength at the interface soil-rough solid materials steel was found to be lower than the shear strength of the soil, for a soil that is classified as high plasticity clay. Furthermore, it was found that the interfacial shear strength is independent of the texture surface for a given roughness.  相似文献   
66.
67.
This study presents an application of the model Soil and Water Assessment Tool (SWAT) to simulate daily and monthly water flow and sediment fluxes in the Wadi Hatab watershed (2200 km2) located in central Tunisia. The study basin is characterized by a significant climatic contrast, abrupt topography, and soil fragility, resulting thereby in flash floods and important water erosion rates. This alarming situation requires urgent interventions in order to preserve water and soil resources, implying the need for a decision tool for proper integrated management of the watershed. The model was calibrated and validated based on a comparison of simulated and observed flow rates at the basin outlet (hydrometric station Khanguet Zazia), during the periods 1987–1988 and 1989–1990, respectively. The comparison was based not only on visual inspection of the agreement between observed and simulated time series, but also on statistical parameters. Indeed, for the daily time step application, the Nash—Sutcliffe efficiency (NSE) values were 0.52 and 0.61, and the coefficient of determination (R2) was 0.54 and 0.61 for calibration and validation, respectively. As for the monthly time-step application, the obtained NSE values were 0.67 and 0.89 while R2 values were 0.83 and 0.87 for calibration and validation, respectively. This clearly shows the reasonably good agreement between simulated and observed flow rates. In terms of erosion, the model gave sediment yield values ??of 1.15 and 5.37 t/ha/year during the periods of calibration and validation, respectively.  相似文献   
68.
Analysis of seismic anisotropy in the crust and mantle wedge above subduction zones gives much information about the dynamic processes inside the Earth. For this reason, we measure shear wave polarization anisotropy in the crust and upper mantle beneath central and southwestern Japan from local shallow, intermediate, and deep earthquakes occurring in the subducting Pacific slab. We analyze S phases from 198 earthquakes recorded at 42 Japanese F-net broadband seismic stations. This data set yields a total of 980 splitting parameter pairs for central and southwestern Japan. Dominant fast polarization directions of shear waves obtained at most stations in the Kanto–Izu–Tokai areas are oriented WNW–ESE, which are sub-parallel to the subduction direction of the Pacific plate. However, minor fast polarization directions are oriented in NNE–SSW directions being parallel to the strike of the Japan Trench, especially in the north of Izu Peninsula and the northern Tokai district. Generally, fast directions obtained at stations located in Kii Peninsula and the Chubu district are oriented ENE–WSW, almost parallel to the Nankai Trough, although some fast directions have NW–SE trends. The fast directions obtained at stations in northern central Honshu are oriented N–S. Delay times vary considerably and range from 0.1 to 1.25 s depending on the source depth and the degree of anisotropy along the ray path. These lateral variations in splitting character suggest that the nature of anisotropy is quite different between the studied areas. Beneath Kanto–Tokai, the observed WNW–ESE fast directions are probably caused by the olivine A-fabric induced by the corner flow. However, the slab morphology in this region is relatively complicated as the Philippine Sea slab is overriding the Pacific slab. This complex tectonic setting may induce lateral heterogeneity in the flow and stress state of the mantle wedge, and may have produced NNE–SSW orientations of fast directions. The ENE–WSW fast directions in Kii Peninsula and the Chubu district are more coherent and may be partly induced by the subduction of the Philippine Sea plate. The N–S fast directions in northern central Honshu might be produced by the trench-parallel stretching of the wedge due to the curved slab at the arc–arc junction.  相似文献   
69.
70.
The aim of the present work is to evaluate the stress direction and the tectonic trends of the study area using magnetic anisotropy and potential field data interpretations (Bouguer and aeromagnetic). The specific objective of the gravity and aeromagnetic interpretation is to establish the trend and depth of the structural configuration of the basement rocks. Horizontal gradient techniques could to delineate directions of deep sources and enabled tracing several faults, lineaments and tectonic boundaries of basement rocks. The trend analysis shows N40°?C50°W, N10°?C20°W and N10°?C20°E which may be related to the Gulf of Suez, Red Sea and Gulf of Aqaba stresses. However, Euler Deconvolution technique was applied using the aeromagnetic data to provide reliable information about penetrated source depth (100 m and ??10.0 km) and trends of the subsurface sources (principally in NW and NE directions). Moreover, representative 72 oriented rock samples have been collected from seven sites in the study area. The rock magnetic properties and magnetic anisotropy analysis have been determined for all the studied samples. The interpretation clearly defined magnetic lineation at all sites and anisotropy of magnetic susceptibility (AMS) parameters. The stress direction of the studied area has been evaluated using magnetic anisotropy and geophysical analysis. Generally the estimated geophysical data analysis (Bouguer and aeromagnetic) are well consistent with the AMS interpretations of this study. The results indicated that the directions of predominant faults and foliations are NW-SE (related to the Gulf of Suez and Red Sea rifting) which indicate that the main stress and tectonic trend is NE-SW, which is more predominant in southern Sinai region. Moreover, it is clear that, the studied area was affected also by less predominant sources trended in NE-SW direction, which related to the tectonic activity of Gulf of Aqaba. The least predominant is north 40°?C50° east that is probably due to the Syrian Arc system. Finally, our results are extremely coincided with the previous stress directions derived from geological, seismological and tectonic analysis in northern Red Sea rift, Gulf of Suez and Sinai regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号