首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   6篇
  国内免费   4篇
大气科学   11篇
地球物理   22篇
地质学   22篇
海洋学   19篇
天文学   4篇
综合类   2篇
自然地理   2篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1997年   1篇
  1994年   1篇
  1991年   2篇
  1985年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
21.
22.
In order to clarify the mechanism of carbon transport in an ice-covered ecosystem in Lake Saroma (44°N44°N, 143°E143°E, Hokkaido, Japan), a three-dimensional numerical calculation using a coupled ice–ocean ecosystem model was conducted. This model comprises an ocean ecosystem model, an ice ecosystem model, and equations for the coupling between ice and ocean. Comparisons of calculated results with observational data confirm that the calculation well reproduced the in situ phenomena with respect to tides, tidal currents, concentrations of POC and chlorophyll a in ice and in water, and sinking fluxes beneath the ice. The analysis of the organic carbon budget based on the calculation reveals that tide-induced transport, the enhancement of biological production in a pelagic system, and the physical release of organic matter from ice associated with ice-melting are important factors affecting the carbon transport during the ice-melting season. The carbon transport has a one-day time cycle. This is because principal driving forces are sunlight, and diurnal tides. The described mechanism of “sunlight and tidal pumping” is one of the most important features of carbon transport in a coupled ice–water ecosystem.  相似文献   
23.
Yoshiki Yamada  Masao Nakada   《Tectonophysics》2006,415(1-4):103-121
The stratigraphic architecture of sedimentary basin provides important constraints on the rheological structure of the upper mantle and the crust, eustatic events and tectonic movements. In this study, we examined the convective coupling between the uppermost mantle and ductile lower crust as a formation mechanism of sedimentary basins. In this mechanism, the lower crust is squeezed by the upper mantle flow associated with mantle diapiric upwelling, resulting in the surface subsidence and formation of sedimentary basin. We investigated the stratigraphic architecture by taking into account the horizontal migration of the upwelling in time and spatial domains. The sedimentary basin is characterized by both the thickness and formation period for its gross feature and the sequence stratigraphy. The decay of the upwelling causes the surface uplift, and some parts of sediments deposited during the surface subsidence are consequently eroded. The subsidence area moves as the activity of upwelling horizontally migrates, resulting in the formation of unconformity for the uplifted and eroded area over the previous upwelling. We also incorporated the effects of third order eustasy, with amplitude of 100 m and period of 1 Myr, into convective coupling model. An application of our model to Karatsu-Sasebo coalfield in the Tertiary of the northwest Kyushu, Japan, indicates that the stratigraphic architecture of sedimentary basin including two effects, i.e. convective coupling and eustasy, may provide important information about the viscosity structure of the lower crust and uppermost mantle and spatio-temporal growth and decay histories of the mantle diapiric upwelling.  相似文献   
24.
Modern deltas are understood to have initiated around 7.5–9 ka in response to the deceleration of sea-level rise. This episode of delta initiation is closely related to the last deglacial meltwater events and eustatic sea-level rises. The initial stage of the Mekong River delta, one of the world's largest deltas, is well recorded in Cambodian lowland sediments. This paper integrates analyses of sedimentary facies, diatom assemblages, and radiocarbon dates for three drill cores from the lowland to demonstrate Holocene sedimentary evolution in relation to sea-level changes. The cores are characterized by a tripartite succession: (1) aggrading flood plain to natural levee and tidal–fluvial channel during the postglacial sea-level rise (10–8.4 ka); (2) aggrading to prograding tidal flats and mangrove forests around and after the maximum flooding of the sea (8.4–6.3 ka); and (3) a prograding fluvial system on the delta plain (6.3 ka to the present). The maximum flooding of the sea occurred at 8.0 ± 0.1 ka, 2000 years before the mid-Holocene sea-level highstand, and tidal flats penetrated up to 20–50 km southeast of Phnom Penh after a period of abrupt ~5 m sea-level rise at 8.5–8.4 ka. The delta progradation then initiated as a result of the sea-level stillstand at around 8–7.5 ka. Another rapid sea-level rise at 7.5–7 ka allowed thick mangrove peat to be widely deposited in the Cambodian lowland, and the peat accumulation endured until 6.3 ka. Since 6.3 ka, a fluvial system has characterized the delta plain, and the fluvial sediment discharge has contributed to rapid delta progradation. The uppermost part of the sedimentary succession, composed of flood plain to natural-levee sediments, reveals a sudden increase in sediment accumulation over the past 600–1000 years. This increase might reflect an increase in the sediment yield due to human activities in the upper to middle reaches of the Mekong, as with other Asian rivers.  相似文献   
25.
The sediment load delivered from the Huanghe (Yellow River) to the sea has decreased sharply to 0.15 × 109 metric tons per year (0.15 Gt/yr) between 2000 and 2005, and now represents only 14% of the widely cited estimate of 1.08 Gt/yr. The river seems to be reverting to the pristine levels characteristic of the middle Holocene, prior to human intervention. Datasets from 1950 to 2005 from four key gauging stations in the main stream reveal distinct stepwise decreases in sediment load, which are attributed to both natural and anthropogenic impacts over the past 56 yr. Completions of two reservoirs, Liujiaxia (1968) and Longyangxia (1985), in the upper reaches of the river and their joint operations have resulted in stepwise decreases in sediment load coming from the upper reaches. Effective soil conservation practices in the middle reaches since the late 1970s, combined with the operation of the Sanmenxia and Xiaolangdi reservoirs, have also caused stepwise decreases in sediment load at Huayuankou in the middle reaches, but the decrease differs from that observed in the upper reaches. Decrease in precipitation is responsible for 30% of the decrease in sediment load at Huayuankou, while the remaining 70% is ascribed to human activities in the river basin, of which soil conservation practices contribute 40% to the total decrease. Sediment retention within reservoirs accounts for 20% of the total sediment load decrease, although there was notable sediment retention within the Xiaolangdi reservoir from 2000 to 2005. The remaining 10% of the decrease in sediment load is a result of the operation of reservoirs in the upper reaches. In the lower reaches, 20% of the sediment passing Huayuankou has been lost as a result of channel deposition and water abstraction. Soil conservation practices and the operation of reservoirs have lowered the content of coarser sediment (D > 0.05 mm) at Huayuankou, and reduced channel deposition in the lower reaches. In contrast, sediment loss owing to water abstraction in the lower reaches has increased considerably as water consumption for agricultural needs has increased. Therefore, the combined effects of climate change and human activities in the upper, middle, and lower reaches have resulted in stepwise decreases in the sediment load delivered from the Huanghe to the sea. The Huanghe provides an excellent example of the altered river systems impacted by climate change and extensive human activities over the past 56 yr. Further dramatic decreases in sediment load and water discharge in the Huanghe will trigger profound geological, morphological, ecological, and biogeochemical responses in the estuary, delta, and coastal sea.  相似文献   
26.
The 14 November 2001 Kunlun, China, earthquake with a moment magnitude (Mw) 7.8 occurred along the Kusai Lake–Kunlun Pass fault of the Kunlun fault system. We document the spatial distribution and geometry of surface rupture zone produced by this earthquake, based on high-resolution satellite (Landsat ETM, ASTER, SPOT and IKONOS) images combined with field measurements. Our results show that the surface rupture zone can be divided into five segments according to the geometry of surface rupture, including the Sun Lake, Buka Daban–Hongshui River, Kusai Lake, Hubei Peak and Kunlun Pass segments from west to east. These segments, each 55 to 130 km long, are separated by step-overs. The Sun Lake segment extends about 65 km with a strike of N45° 75°W (between 90°05′E 90°50′E) along the previously unrecognized West Sun Lake fault. A gap of about 30 km long exists between the Sun Lake and Buka Daban Peak where no obvious surface ruptures can be observed either from the satellite images or field observations. The Buka Daban–Hongshui River, Kusai Lake, Hubei Peak and Kunlun Pass segments run about 365 km striking N75° 85°W along the southern slope of the Kunlun Mountains (between 91°07′E 94°58′E). This segmentation of the surface rupture is well correlated with the pattern of slip distribution measured in the field. Detailed mapping suggest that these five first-order segments can be further separated into over 20 second-order segments with a length of 10–30 km, linked by smaller scale step-overs or bends.Our result also shows that the total coseismic surface rupture length produced by the 2001 Kunlun earthquake is about 430 km (excluding the 30-km-long gap), which is the longest coseismic surface rupture for an intracontinental earthquake ever recorded.Finally, we suggest a multiple bilateral rupture propagation model that shows the rupture process of the 2001 Mw 7.8 earthquake is complex. It consists of westward and eastward rupture propagations and interaction of these bilateral rupture processes.  相似文献   
27.
抚顺市是中国重要的采煤城市之一,100多年的煤矿开采已经使抚顺地区的地貌特征发生了重大变化。由于长期的露天开采,抚顺西露天矿形成了一个海拔约为-300m的深坑;煤矿的地下开采造成了大面积的地表沉陷;与此同时,煤矸石的露天堆积形成了3个排土场。本研究利用多时相的美国Landsat MSS(Multispectral Scanner),TM(Thematic Mapper),ETM+(Enhanced Thematic Mapper Plus),以及日本ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer)卫星遥感数据分析过去近30年来抚顺地区煤矿开采所引起的地貌变化。多时相卫星遥感图像的对比分析显示,由于地面沉陷引起的地表积水面积在近5年(2001~2006年)内出现明显增大的趋势,增加了1.73km。同期的ASTER DEM数据对比分析还发现,西露天矿的开采深度在不断增加,最大增加量为55m,与此同时出现的新增排土场造成地面高程增加量最大为25m。这一研究表明利用遥感技术可以定量监测人类矿产开发活动所引起的地貌特征变化及其过程。  相似文献   
28.
Morphodynamics of deltas under the influence of humans   总被引:8,自引:0,他引:8  
A consistent database was established to characterize key environmental factors known to control delta morphology. The database includes the location, basin morphology, fluvial and sediment discharge to the deltas, delta morphology, ocean energy, and shelf depth reached by the sub-aqueous delta. Fifty-one deltas were selected to cover the global parameter range of rivers entering all major oceans and coastal seas. Seasonal satellite images of the deltas were processed (IKONOS, SPOT, LANDSAT, and MODIS). Predictive statistical relationships were obtained, suitable for hypothesis testing or to constrain/verify numerical models used to simulate the evolution of coastal systems. The area of a delta is best predicted from average discharge, the total sediment load feeding the delta, and the offshore accommodation space. The gradient of a delta plain, measured from the apex of the delta to the coast along the main channel, is best predicted with a ratio of sediment supply to sediment retention, sediment concentration used as a proxy of delta plain sedimentation, and mean water discharge. Widths of distributary channels form a lognormal distribution, with the cumulative width of the river mouths directly related to the maximum discharge, tidal and wave energy. The grain size of topset deposits scales with the river length. Hundreds of millions of people occupy deltas and human engineering is now a major influence on the growth and evolution of many deltas, through control of the flow path of distributary channels, and mitigation of the seasonal flood wave with concomitant change in the delivery of sediment load. More and more deltas are moving away from their pre-Anthropocene morphology, as influenced by pristine sediment supply and sediment dispersal.  相似文献   
29.
An emission pathway for stabilization at 6?Wm?2 radiative forcing   总被引:1,自引:0,他引:1  
Representative Concentration Pathway 6.0 (RCP6) is a pathway that describes trends in long-term, global emissions of greenhouse gases (GHGs), short-lived species, and land-use/land-cover change leading to a stabilisation of radiative forcing at 6.0 Watts per square meter (Wm?2) in the year 2100 without exceeding that value in prior years. Simulated with the Asia-Pacific Integrated Model (AIM), GHG emissions of RCP6 peak around 2060 and then decline through the rest of the century. The energy intensity improvement rates changes from 0.9% per year to 1.5% per year around 2060. Emissions are assumed to be reduced cost-effectively in any period through a global market for emissions permits. The exchange of CO2 between the atmosphere and terrestrial ecosystem through photosynthesis and respiration are estimated with the ecosystem model. The regional emissions, except CO2 and N2O, are downscaled to facilitate transfer to climate models.  相似文献   
30.
The East Asian marginal seas are important sinks of terrigenous materials transported by large rivers. In this study two cores from the Changjiang (Yangtze River) and Zhujiang (Pearl River) estuaries and one core from the inner shelf off of Hong Kong were investigated to examine the burial of organic matter during the postglacial period and its possible links with paleoenvironmental changes. Based on a simple two end-member mixing model, the terrestrial organic matter supplied primarily from the Zhujiang and Changjiang dominates the estuarine areas while marine organic matter contributes more to the inner-mid shelf. The competing contributions of terrestrial and marine organic matter are responsible for the downcore variations of organic elemental compositions. The overall decreasing shifts of total organic carbon concentrations and total organic carbon to total nitrogen ratios in the Zhujiang estuarine sediments since 6.5 kaBP seems to support the notion that depth profiles of organic matter compositions deposited in the Zhujiang Estuary can aid in the reconstruction of monsoon history in the Holocene. Nevertheless, organic matter compositions in the Changjiang Estuary and inner shelf off of southeastern Hong Kong respond in a different and more complex way to freshwater discharges or precipitation changes (monsoon variability) in the catchments, owing to complex controls of deposition and preservation of organic matter in these estuarine and shelf environments. Caution is therefore needed in using organic elemental and isotopic compositions to decipher paleoenvironmental changes in East Asian continental shelves where intense river–sea interactions occur and sedimentary environments change drastically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号