首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1148篇
  免费   35篇
  国内免费   4篇
测绘学   39篇
大气科学   82篇
地球物理   229篇
地质学   355篇
海洋学   135篇
天文学   209篇
综合类   1篇
自然地理   137篇
  2021年   12篇
  2020年   15篇
  2019年   14篇
  2018年   16篇
  2017年   21篇
  2016年   29篇
  2015年   25篇
  2014年   32篇
  2013年   64篇
  2012年   28篇
  2011年   66篇
  2010年   34篇
  2009年   55篇
  2008年   51篇
  2007年   47篇
  2006年   62篇
  2005年   36篇
  2004年   40篇
  2003年   39篇
  2002年   46篇
  2001年   43篇
  2000年   31篇
  1999年   23篇
  1998年   22篇
  1997年   19篇
  1996年   19篇
  1995年   17篇
  1994年   19篇
  1993年   16篇
  1992年   11篇
  1991年   16篇
  1990年   13篇
  1989年   7篇
  1988年   13篇
  1987年   12篇
  1986年   7篇
  1985年   19篇
  1984年   21篇
  1983年   12篇
  1982年   12篇
  1981年   11篇
  1979年   15篇
  1978年   7篇
  1977年   8篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1971年   5篇
  1970年   5篇
排序方式: 共有1187条查询结果,搜索用时 93 毫秒
81.
The western margin of the Lachlan Fold Belt contains early ductile and brittle structures that formed during northeast‐southwest and east‐west compression, followed by reactivation related to sinistral wrenching. At Stawell all of these structural features (and the associated gold lodes) are dismembered by a complex array of later northwest‐, north‐ and northeast‐dipping faults. Detailed underground structural analysis has identified northwest‐trending mid‐Devonian thrusts (Tabberabberan) that post‐date Early Devonian plutonism and have a top‐to‐the‐southwest transport. Deformation associated with the initial stages of dismemberment occurred along an earlier array of faults that trend southwest‐northeast (or east‐west) and dip to the northwest (or north). The initial transport of the units in the hangingwall of these fault structures was top‐to‐the‐southeast. ‘Missing’ gold lodes were discovered beneath the Magdala orebody by reconstructing a displacement history that involved a combination of transport vectors (top‐to‐the‐southeast and top‐to‐the‐southwest). Fold interference structures in the adjacent Silurian Grampians Group provide further evidence for at least two almost orthogonal shortening regimes, post the mid‐Silurian. Overprinting relationships, and correlation with synchronous sedimentation in the Melbourne Trough, indicates that the early fault structures are mid‐ to late‐Silurian in age (Ludlow: ca 420–414 Ma). These atypical southeast‐vergent structures have regional extent and separate significant northeast‐southwest shortening that occurred in the mid‐Devonian (‘Tabberabberan orogeny’) and Late Ordovician (‘Benambran orogeny’).  相似文献   
82.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   
83.
This paper presents a finite‐element (FE) model for simulating injection well testing in unconsolidated oil sands reservoir. In injection well testing, the bottom‐hole pressure (BHP) is monitored during the injection and shut‐in period. The flow characteristics of a reservoir can be determined from transient BHP data using conventional reservoir or well‐testing analysis. However, conventional reservoir or well‐testing analysis does not consider geomechanics coupling effects. This simplified assumption has limitations when applied to unconsolidated (uncemented) oil sands reservoirs because oil sands deform and dilate subjected to pressure variation. In addition, hydraulic fracturing may occur in unconsolidated oil sands when high water injection rate is used. This research is motivated in numerical modeling of injection well testing in unconsolidated oil sands reservoir considering the geomechanics coupling effects including hydraulic fracturing. To simulate the strong anisotropy in mechanical and hydraulic behaviour of unconsolidated oil sands induced by fluid injection in injection well testing, a nonlinear stress‐dependent poro‐elasto‐plastic constitutive model together with a strain‐induced anisotropic permeability model are formulated and implemented into a 3D FE simulator. The 3D FE model is used to history match the BHP response measured from an injection well in an oil sands reservoir. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
84.
Of the recognized nonsteady-state factors that influence slope stability, probably most critical in many field situations is the character of precipitation and infiltration activity. A groundwater response model used in conjunction with precipitation records can provide a historical catalog of estimated maximum groundwater levels in a particular study area. An extreme-value statistical analysis of this catalog is linked with geotechnical slope stability analyses to provide a landslide hazard model for estimating the probability of slope failure within a given time. This modeling approach can provide meaningful input to risk assessments for landslide mitigation programs and to decision analyses and cost-benefit studies important for land-use planning and resource management.This paper was presented at Emerging Concepts, MGUS 87 Conference, Redwood City, California, 13–15 April 1987.  相似文献   
85.
The thermal history of outcropping Devonian sediments of the northern Appalachian Basin, New York, has been investigated using fission track analysis of detrital apatites from 57 sandstone samples. Based on lengths and apparent age measurements using fission tracks in apatite it is concluded that Lower Devonian sediments presently at the surface in the Catskill region were cooled rapidly from temperatures higher than about 110°C during Early Cretaceous times (120–140 Ma ago). In the western part of New York (Wellsville-Buffalo) data from late Devonian sediments are consistent with cooling at the same time as that identified for the Catskill region but from lower temperatures, in the range of approximately 80–110°C, the maximum temperature these sediments experienced since deposition. For a pre-uplift paleogeothermal gradient of 25–35°C/km, the confined track length data indicates uplift and erosion of 2–3 km for western New York and greater than 3–4 km for the Catskill region, a differential uplift pattern which is consistent with the historical stratigraphic data from the region. This conclusion is at variance with earlier interpretations put forth by others.Rapid broad scale uplift and erosion of the scale identified imply that large volumes of sediment could have been supplied from the northern Appalachian Basin during the Early Cretaceous. This timing for the dominant post-Devonian cooling phase in the basin is not accounted for by recent models of the tectonic evolution of the Appalachian Orogen but is compatible with the change from carbonate to siliciclastic deposition in the Atlantic coastal plain. It is suggested that this style of broad regional uplift without significant deformation is characteristic of a tectonic regime associated with, and subsequent to, continental rifting.Apatite fission track analysis is shown to be a basic tool in providing fundamental limits for thermal history assessment in regional tectonic problems.  相似文献   
86.
Summary Casual observers of the impacts associated with four recent freezes in Florida's citrus producing areas might be inclined to agree with an assessment by Miami Herald reporters that these freezes had caused the king of citrus to be toppled from its throne, enabling Brazil to take its place. Research on the citrus industry, however, reveals that the impacts of these recent freezes only explain part of the story of the interaction between climate variability and the relationship between the citrus industries of Florida and Brazil. Climate characteristics and their variability have directly as well as indirectly affected the economic competitiveness of citrus producers whose output is in large measure climate-dependent. Climate variability has had direct impacts on Florida's citrus industry by adversely affecting the productivity of citrus groves in some areas, by altering growers' perceptions of freeze probabilities and, occasionally, by suddenly reducing output, thus elevating the price that consumers must pay for that commodity. Indirectly, competition can be affected by climate as a potential producer identifies a weakness in the supply system of an existing industry and seeks to fill the gap.Brazil's involvement in the toppling of King Citrus began not in the early 1980s (as a result of the four freezes in the past six years), but in 1962 as a result of a major freeze in that year, one that sharply increased FCOJ prices by reducing Florida's output. It was then that the climate had an impact on the economic competitiveness of the citrus industry. The records document the steady, almost meteoric, rise in Brazilian FCOJ production and exports. Subsequent freezes only served to abet a process that had been well underway two decades before the recent devastating freezes.As for Florida's ability to continue and perhaps expand its key role in the global citrus economy, the recent freezes do not appear to have fatally damaged that. Rather, those freezes have reawakened Florida's citrus producers to the fact that they are involved in a climate-sensitive industry and have reminded them that the potential for freeze-related problems is never far away. That reawakening has sparked interest in developing hardier citrus varieties, more effective freeze protection methods, and better ways to hedge economically against freeze impacts to the industry.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
87.
Quaternary evolution of Cedar Creek alluvial fan, montana   总被引:1,自引:0,他引:1  
Cedar Creek alluvial fan is a textbook example of an alluvial fan because of its fan shape with smooth, concentric contours and excellent symmetry. Similar planimetric shapes have been used to infer uniform fan deposition; however, Cedar Creek alluvial fan is composed of four fan deposits of Quaternary age, Qf1 (oldest) to Qf4 (youngest), indicating that fan deposition was nonuniform in both time and space. Field studies indicate that deposition of Cedar Creek alluvial fan is related to glaciofluvial outwash activity during the Pleistocene and upper-fan entrenchment and lower-fan deposition during the Holocene.Qf1 and Qf2 deposits are sub-horizontally bedded, clast-supported sandy gravels uniformly imbricated upfan. Comparison of soil profiles developed in these deposits to radiogenically-dated chronosequences within the region indicates that Qf1 and Qf2 are correlative with Bull Lake and Pinedale-age deposits, respectively. These relationships are substantiated by physical correlation of Qf1 and Qf2 with Bull Lake and Pinedale moraines, respectively, in the Cedar Creek drainage basin. The sedimentology and timing of Qf1 and Qf2 indicate deposition in high-energy, proglacial, braided streams. Furthermore, the present morphology of Cedar Creek alluvial fan was established largely during aggradation of Qf1 and Qf2 when sediment supply to the fan was sufficient to activate 60% to greater than 90% of the total fan area. During Bull Lake glaciation, the apex of Qf1 deposition formed the apex of Cedar Creek alluvial fan as Qf1 covered more than 90% of the present fan area. During Pinedale glaciation, Qf2 deposition shifted downfan; Qf2 is inset into Qf1 above the intersection point, but below the intersection point it eroded and/or buried Qf1 as it activated as much as 60% of the fan area.Qf3 and Qf4, comprising 21% of the fan area, are inset into Qf2 in the lower fan area. Soil development in Qf3 and Qf4 deposits indicate episodic deposition and entrenchment beginning in early Holocene and continuing to present. A post-glacial decrease in sediment supply to Cedar Creek alluvial fan is indicated by sediment storage within the Cedar Creek drainage basin. Decreased sediment supply to the fan resulted in upper-fan entrenchment of Qf2 and deposition of Qf3 and Qf4 in the lower-fan area.  相似文献   
88.
A numerical model was developed to simulate neutrally stratified air flow over and through a forest edge. The spatially averaged equations for turbulent flow in vegetation canopies are derived as the governing equations. A first-order closure scheme with the capability of accounting for the bulk momentum transport process in vegetation canopies is employed. The averaged equations are solved numerically by a fractional time-step method and successive relaxation. The asymptotic solution in time is regarded as the steady-state solution. Comparisons of model output to the field measurements of Raynor (1971) indicate that the model provides a realistic mean flow.Momentum balance computations show that the pressure gradient induced by the wind blowing against the forest edge is significant and has the same order of magnitude as the drag force in the edge region. The edge effect involves the generation of drag forces, the appearance of a large pressure gradient, the upward deflection of mean flow and the transport of momentum into the edge of the canopy.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号