首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2656篇
  免费   473篇
  国内免费   776篇
测绘学   145篇
大气科学   695篇
地球物理   674篇
地质学   1369篇
海洋学   361篇
天文学   91篇
综合类   224篇
自然地理   346篇
  2024年   9篇
  2023年   41篇
  2022年   95篇
  2021年   131篇
  2020年   125篇
  2019年   121篇
  2018年   158篇
  2017年   137篇
  2016年   165篇
  2015年   135篇
  2014年   144篇
  2013年   172篇
  2012年   159篇
  2011年   176篇
  2010年   176篇
  2009年   140篇
  2008年   166篇
  2007年   148篇
  2006年   130篇
  2005年   112篇
  2004年   94篇
  2003年   98篇
  2002年   91篇
  2001年   74篇
  2000年   89篇
  1999年   134篇
  1998年   89篇
  1997年   101篇
  1996年   88篇
  1995年   70篇
  1994年   67篇
  1993年   47篇
  1992年   28篇
  1991年   35篇
  1990年   27篇
  1989年   21篇
  1988年   20篇
  1987年   12篇
  1986年   17篇
  1985年   7篇
  1984年   11篇
  1983年   9篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1976年   3篇
  1966年   3篇
  1958年   3篇
排序方式: 共有3905条查询结果,搜索用时 359 毫秒
141.
142.
143.
144.
The Zhengguang deposit, a representative large gold deposit in the Duobaoshan ore field in NE China, is located in the northeast of the Central Asian Orogenic Belt (CAOB). Ore body emplacement was structurally controlled and occurs mainly at the contact zone between the strata of Duobaoshan Formation and an Ordovician diorite stock. The diorite rocks have a close genetic relationship with Au mineralization. Re–Os isotope dating of Au-bearing pyrite yields an isochron age of 506 ± 44 Ma (MSWD = 15). Based on present and previous dating results, it can be concluded that the Zhengguang deposit formed at ~480 Ma. The mineralization time of the Zhengguang deposit is nearly identical to those of the Duobaoshan and Tongshan deposits, indicating they are all derived from the same metallogenic system. The Duobaoshan-style porphyry Cu–Mo mineralization may exist at deeper levels at Zhengguang. The geochemical characteristics of the Zhengguang dioritic rocks presented in this paper are similar to those of bajaitic high-Mg andesite, and the magmas originated from a mantle wedge metasomatized by melts from a subducting oceanic slab at an active continental margin setting. The Ordovician magmatic–metallogenic events in the Duobaoshan ore field were caused by the westward subduction of an oceanic slab located between the Xing’an and Songliao blocks. It is worth pointing out that the Zhengguang deposit is the oldest known Phanerozoic Au deposit in NE China. Further studies of this deposit will improve understanding of the regularity of ore formation and aid mineralization forecast across the Duobaoshan region.  相似文献   
145.
中尺度涡在大洋中普遍存在,研究发现其能量比大尺度海洋环流的能量大一个量级,在海洋物质能量输运和全球气候变化中起着重要的作用。受观测条件限制,目前对中尺度涡的观测主要通过卫星高度计实现,只能从海面高度来推算中尺度涡大小、分布、强度及其伴随的水体和能量输送,而卫星高度计对中尺度涡垂直结构特征认识不足,也导致了对中尺度涡所引起的上层海洋能量、热量输送估计误差偏大。目前对中尺度涡三维结构观测认识不足,展望未来将会出现基于无人船平台的大洋中尺度涡三维结构自动观测系统,该平台将集成自动水下剖面观测功能等先进技术,以便观测中尺度涡的垂直结构特征及其时空变化特征,进而可对中尺度涡带来的物质和能量输送进行系统认识。  相似文献   
146.
Some Au deposits in southern Anhui Province have recently been found to be closely associated with Late Mesozoic intrusions. Typical examples include the Huashan Au (Sb) deposit and Au deposits at Zhaojialing, Wuxi, and Liaojia. In order to understand the mechanisms that led the formation of these Au deposits, we make detailed reviews on the geological characteristics of these Au deposits. Specifically, we present new LA-ICP-MS zircon U–Pb dating, along with elemental and Hf isotopic data from the Huashan Au (Sb) deposit. Our data suggests that the Huashan ore-related intrusions were emplaced during the Late Jurassic and Early Cretaceous periods (144–148 Ma). They are characterized by arc-magma features and high oxygen fugacity and are rich in inherited zircons. Zircon U–Pb ages and Lu–Hf isotopes from intrusions suggest that Proterozoic juvenile lithosphere is the main source of these intrusions. The regional geological history implies that lithosphere beneath southern Anhui was produced during a Proterozoic subduction and was fertilized with Au (Cu) in the process. Integrated with the results of previous studies, we inferred that Late Mesozoic intrusions formed by the remelting of the lithosphere could provide the metal endowment for the Au-rich deposits in southern Anhui.  相似文献   
147.
148.
The aim of the study involves examining the effect of heavy oil viscosity on fracture geometry in detail by establishing a heavy oil fracturing model and conventional fracturing model based on thermal–hydraulic–mechanical (THM) coupled theory, Walther viscosity model, and K–D–R temperature model. We consider viscosity and density within the heavy oil fracturing model as functions of pressure and temperature while that as constants within the conventional fracturing model. A heavy oil production well is set as an example to analyze the differences between the two models to account for the thermo-poro-elastic effect. The results show that temperature exhibits the most significant influence on the heavy oil viscosity while the influence of pressure is the least. In addition, a cooling area with a width of 0–1 m and varied length is generated near the fracture. The heavy oil viscosity increases sharply in this area, thereby indicating an area of viscosity increment. The heavy oil viscosity increases faster and is closer to wellbore, and a high viscosity increment reduces the mobility of the heavy oil and prevents the fracturing fluid from entering into the reservoir. The special viscosity distribution results in significant differences in pore pressure, oil saturation, and changing trends between these two models. In the heavy oil reservoir fracturing model, the thermal effect completely exceeds the influence of pore elasticity, and the values of the fracture length, width, and static pressure exceed those calculated in the conventional fracturing model. Thus, a comparison of the measured values indicates that the results obtained by considering viscosity as a function of temperature and pressure are more accurate. Therefore, the results of this study are expected to provide good guidelines for the design of heavy oil fracturing.  相似文献   
149.
目前准噶尔盆地腹部地区超压演化过程仅提供了相对时间、概念、定性的认识,并未达到定量化。本文以东道海子北凹陷为例,基于流体包裹体、单井一维和剖面二维烃源岩成熟生烃史模拟技术,采用生烃增压模型定量化评价了侏罗纪八道湾组顶部和底部烃源岩的生烃增压演化过程。研究结果表明侏罗纪八道湾组为东道海子北凹陷主力烃源岩,具有幕式排烃的特点。八道湾组底部烃源岩经历了3 次超压增加和两次超压释放的过程,顶部烃源岩经历了两次超压增加和一次超压释放的过程。八道湾底部烃源岩3 次超压增加的时间分别为距今170~70 Ma、55~23 Ma、10~0 Ma,对应最大压力系数均为2.0,最大剩余流体压力50 MPa,两次超压释放的时间分别为70~55 Ma、23~10 Ma;八道湾组顶部烃源岩两次超压增加的时间分别为130~40 Ma、23~0 Ma,对应流体最大压力系数最大亦可达2.0 左右,最大剩余流体压力44 MPa,超压释放的时间为40~23 Ma。  相似文献   
150.
基于GIPL2模型的青藏高原活动层土壤热状况模拟研究   总被引:5,自引:5,他引:0  
青藏高原活动层土壤热状况,对深入了解高原活动层的厚度变化特征、下垫面的热力作用以及对气候变化预测均有重要意义。利用GIPL2模型模拟青藏高原多年冻土区不同植被状况下活动层土壤热状况。模拟结果表明:模型在高寒草原(QT06)试验点模拟效果较好,高寒沼泽草甸(QT03)试验点的模拟效果较差,高寒草甸(QT01)、高寒荒漠草原(QT05)和高寒草原化草甸(QT04)试验点的模拟效果介于高寒草原试验点和高寒沼泽草甸试验点之间。QT01、QT03、QT04、QT05和QT06的土壤温度模拟值与观测值相比,均方根误差分别为0.67、1.29、0.73、0.7和0.56℃;相关系数分别为0.99、0.87、0.98、0.98和0.96;平均误差分别为0.37、0.61、0.31、0.45和0.16℃。QT06模拟结果较好,原因在于此点土壤质地变化不大,模型的分层与所取的参数更加接近此点的实际状况。QT03模拟结果较差,可能由于此地区土壤中存在砾石,在导热率参数化方案中没有考虑砾石含量,导致模拟结果偏差较大。总体而言,GIPL2模型对青藏高原活动层土壤热状况的模拟具有一定的优势,是一种模拟多年冻土区活动层土壤热状况较为理想的模型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号