首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7486篇
  免费   1134篇
  国内免费   1009篇
测绘学   660篇
大气科学   900篇
地球物理   2308篇
地质学   3627篇
海洋学   826篇
天文学   358篇
综合类   375篇
自然地理   575篇
  2024年   16篇
  2023年   47篇
  2022年   152篇
  2021年   204篇
  2020年   139篇
  2019年   162篇
  2018年   589篇
  2017年   523篇
  2016年   379篇
  2015年   301篇
  2014年   243篇
  2013年   305篇
  2012年   860篇
  2011年   653篇
  2010年   320篇
  2009年   344篇
  2008年   288篇
  2007年   299篇
  2006年   332篇
  2005年   986篇
  2004年   1018篇
  2003年   735篇
  2002年   252篇
  2001年   182篇
  2000年   108篇
  1999年   42篇
  1998年   8篇
  1997年   25篇
  1996年   18篇
  1992年   4篇
  1991年   10篇
  1990年   12篇
  1989年   6篇
  1988年   3篇
  1987年   6篇
  1985年   4篇
  1983年   3篇
  1980年   3篇
  1976年   3篇
  1975年   4篇
  1969年   2篇
  1968年   2篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   3篇
  1951年   2篇
  1948年   2篇
排序方式: 共有9629条查询结果,搜索用时 31 毫秒
951.
The Norilsk mining district is located at the northwest margin of the Tunguska basin, in the centre of the 3,000×4,000 km Siberian continental flood basalt (CFB) province. This CFB province was formed at the Permo-Triassic boundary from a superplume that ascended into the geometric centre of the Laurasian continent, which was surrounded by subducting slabs of oceanic crust. We suggest that these slabs could have reached the core–mantle boundary, and they may have controlled the geometric focus of the superplume. The resulting voluminous magma intruded and erupted in continental rifts and related extensive flood basalt events over a 2–4 Ma period. Cu–Ni–PGE sulfide mineralization is found in olivine-bearing differentiated mafic intrusions beneath the flood basalts at the northwestern margin of the Siberian craton and also in the Taimyr Peninsula, some 300 km east of a triple junction of continental rifts, now buried beneath the Mesozoic–Cenozoic sedimentary basin of western Siberia. The Norilsk-I and Talnakh-Oktyabrsky deposits occur in the Norilsk–Kharaelakh trough of the Tunguska CFB basin. The Cu–Ni–PGE-bearing mineralized intrusions are 2–3 km-wide and 20 km-long differentiated chonoliths. Previous studies suggested that parts of the magma remained in intermediate-level crustal chambers where sulfide saturation and accumulation took place before emplacement. The 5–7-km-thick Neoproterozoic to Palaeozoic country rocks, containing sedimentary Cu mineralization and evaporites, may have contributed additional metal and sulfur to this magma. Classic tectonomagmatic models for these deposits proposed that subvertical crustal faults, such as the northeast-trending Norilsk–Kharaelakh fault, were major trough-parallel conduits providing access for magmas to the final chambers. However, geological maps of the Norilsk region show that the Norilsk–Kharaelakh fault offsets the mineralization, which was deformed into folds and offset by related reverse faults, indicating compressional deformation after mineralization in the Late Triassic to Early Jurassic. In addition, most of the intrusions are sills, not dykes as should be expected if the vertical faults were major conduits. A revised tectonic model for the Norilsk region takes into account the fold structure and sill morphology of the dominant intrusions, indicating a lateral rather than vertical emplacement direction for the magma into final chambers. Taking into account the fold structure of the country rocks, the present distribution of the differentiated intrusions hosting the Norilsk-I and Talnakh–Oktyabrsky deposits may represent the remnants of a single, >60 km long, deformed and eroded palm-shaped cluster of mineralized intrusions, which are perceived as separate intrusions at the present erosional level. The original direction of sill emplacement may have been controlled by a northeast-trending paleo-rise, which we suggest is present at the southeastern border of the Norilsk–Kharaelakh trough based on analysis of the unconformity at the base of the CFB. The mineralized intrusions extend along this rise, which we interpret as a structure that formed above the extensionally tilted block in the metamorphic basement. Geophysical data indicate the presence of an intermediate magma chamber that could be linked with the Talnakh intrusion. In turn, this T-shaped flat chamber may link with the Yenisei–Khatanga rift along the northwest-trending Pyasina transform fault, which may have served as the principal magma conduit to the intermediate chamber. It then produced the differentiated mineralized intrusions that melted through the evaporites with in situ precipitation of massive, disseminated, and copper sulfide ore. The Norilsk–Kharaelakh crustal fault may not relate to mineralization and possibly formed in response to late Mesozoic spreading in the Arctic Ocean.Editorial handling: P. Lightfoot  相似文献   
952.
The Palaeoproterozoic (1.9 Ga) Rytky and Kotalahti mafic-ultramafic intrusions are located in the contact zone between the Archaean craton and Proterozoic supracrustal rocks. During the second deformation event (D2) the surrounding country rocks were subjected to intensive metamorphism and deformation associated with the Svecofennian orogeny; the Archaean/Proterozoic boundary controlled both D2 thrusting and magma ascent. Emplacement of the Rytky and Kotalahti intrusions took place at the culmination of D2, as shown by the gneiss inclusions with S2 schistosity within the intrusions. Overthrusting continued after emplacement, with detached fragments of the bodies incorporated into the Archaean gneisses. During the third deformation event (D3) the originally subhorizontal intrusions were rotated into a subvertical position, so that they now have their stratigraphic top towards the west. The Rytky intrusion is composed mainly of medium- and coarse-grained lherzolite, websterite and gabbronorite. The nickel deposit with pentlandite as the main nickel mineral is associated with the lherzolite and websterite. The coarse-grained lherzolite, websterite and melagabbro represent the first rocks to form, and they contain the nickel sulphide mineralisation. Country rock contamination, as indicated by high TiO2, P2O5, Rb, Zr and light rare earth element contents (LREE), is most pronounced in the marginal part of the intrusion, which was the first to form. The variation in olivine composition (Fo 78.6-84.77 mole %; Ni 630–2386 ppm) and the metal ratio of the sulphide (Ni/Co 19.3 – 50.3) along with the internal stratigraphy of the intrusion indicate an in-situ process of sulphide ore formation.Editorial handling: P. LightfootAn erratum to this article can be found at  相似文献   
953.
A large number of Mississippi Valley-Type (MVT) deposits are located within dissolution zones in carbonate host rocks. Some genetic models propose the existence of cavities generated by an earlier event such as a shallow karstification, that were subsequently filled with hydrothermal minerals. Alternative models propose carbonate dissolution caused by the simultaneous precipitation of sulfides. These models fail to explain either the deep geological setting of the cavities, or the observational features which suggest that the dissolution of carbonates and the precipitation of minerals filling the cavities are not strictly coeval. We present a genetic model inspired by the textural characteristics of MVT deposits that accounts for both the dissolution of carbonate and precipitation of sulfides and later carbonates in variable volumes. The model is based on the mixing of two hydrothermal fluids with a different chemistry. Depending on the proportion of the end members, the mixture dissolves and precipitates carbonates even though the two mixing solutions are both independently saturated in carbonates. We perform reactive transport simulations of mixing of a regional groundwater and brine ascending through a fracture, both saturated in calcite, but with different overall chemistries (Ca and carbonate concentrations, pH, etc). As a result of the intrinsic effects of chemical mixing, a carbonate dissolution zone, which is enhanced by acid brines, appears above the fracture, and another zone of calcite precipitation builds up between the cavity and the surrounding rock. Sulfide forms near the fracture and occupies a volume smaller than the cavity. A decline of the fluid flux in the fracture would cause the precipitation of calcite within the previously formed cavities. Therefore, dissolution of carbonate host rock, sulfide precipitation within the forming cavity, and later filling by carbonates may be part of the same overall process of mixing of fluids in the carbonate host rock.Editorial handling: C. Everett  相似文献   
954.
The Changba Pb-Zn SEDEX deposit occurs in the Middle Devonian sequence of the Anjiaca Formation of the Western Qinling Hercynian Orogen in the Gansu Province, China. The Changba-II orebody is hosted in biotite quartz schist and is the largest of 143 stratiform orebodies that are hosted either in biotite quartz schist or marble. The Changba-II comprises two types of mineralization: a bedded facies and an underlying breccia lens. The bedded section exhibits three sulfide sub-facies zoned from bottom to top: 1) banded sphalerite intercalated with quartz albitite; 2) interbedded massive pyrite and sphalerite ore; and 3) banded sphalerite ore intercalated with banded baritite. Major metallic minerals are sphalerite, pyrite, galena, with minor arsenopyrite, pyrrhotite, boulangerite, and rare chalcopyrite. The bedded sulfides are underlain by a lens of brecciated and albitized biotite-quartz schists cemented by sulfides and tourmaline.Massive and bedded sulfide 34S values range from 8.1 to 29.3, whereas barite 34S values range from 20.8 to 31.5. Disseminated pyrite in footwall schists has 34S values ranging from 8.1 to 10.6, and increase to values ranging from 11.1 to 14.7 in the hangingwall. The lower 34S values for massive and bedded sulfides are interpreted to be derived from progressive bacterial sulfate reduction (BSR) of Devonian seawater in a sulfate-restricted sub-basin. The higher 34S values for massive and bedded sulfides could be a product of quantitative BSR but this is incompatible with barite being more abundant above the bedded sulfides. Instead, it is more likely that thermochemical sulfate reduction of seawater sulfate or of evaporite was the source of heavy hydrothermal sulfur. Heavy hydrothermal sulfur was injected into a sulfate-restricted sub-basin where it mixed with low 34S BSR sulfide to form the massive and bedded sulfides. The REE patterns of sulfide layers and associated quartz albitite and baritite are similar to those of the host biotite quartz schists, suggesting that the hydrothermal fluids leached REE from the underlying rocks. Pb isotope ratios in galena form an array between the Upper Crust and the Mantle reservoir curves, which indicates that the lead is derived from upper crustal rocks comprising mafic igneous units. The Sr87/Sr86 ratio of 0.7101 for carbonate within the sulfide layers also suggests that Sr is derived from the mixing of Sr leached from upper crustal rocks with Middle Devonian seawater Sr. A Rb-Sr isochron age of 389.4 ± 6.4 Ma for sulfide layers and the interbedded hydrothermal sediments is consistent with the age of host Mid-Devonian strata. Ar39/Ar40 plateau age at 352.8 ± 3.5 Ma and Ar39-Ar40 isochron age of 346.6 ± 6.4 Ma for albite in the quartz albitite intercalated with sulfide layers indicate either albite formation after the sulfides or thermal resetting of the Rb-Sr system at about 350 Ma, the age of collision between the North China and Yangtze cratons.Editorial handling: E. Frimmel  相似文献   
955.
This paper presents Nd-Sr-Pb isotope data on scheelite, inclusion fluids and residues of gangue quartz, and sulfides from the W-Sb-Au ore deposits at Woxi and Liaojiaping (LJP) in the Xuefeng Uplift Belt (XUB), Western Hunan, China. Sm and Nd concentrations in scheelite from Woxi are much lower than in scheelite from LJP and can be distinguished by their high 147Sm/144Nd ratios of ~1.25 from the much lower ratios around 0.26 in scheelites from the LJP. Nd values (compared to values at 200 Ma, which is the average timing of granitoid emplacement during the Indosinian-Yanshanian periods in the XUB) are around –10 for the LJP and compare well with the range of –5 to –11 defined by the granitoids, whereas they are around –27 for scheelite from Woxi. This might indicate that REEs in the mineralizing fluids at LJP originated from granitoids that are concentrated along the southern border of the XUB, whereas in the case of Woxi, the original fluids might have been masked by REEs released during intense high-temperature wall rock alteration of unexposed Precambrian basement rocks at depth. Sr isotopes of scheelite from these two deposits show similar relations to host / nearby rocks, in that 87Sr/86Sr (T=200 Ma) ratios of ~0.721 for LJP scheelite agree with values ranging between 0.718 – 0.726 for granitoids, whereas these ratios are much higher (i.e. 0.745) for scheelite from Woxi and correspond to the 87Sr/86Sr (T=200 Ma) ratio range of 0.743 – 0.749 for Precambrian host slates. Crushing experiments to release inclusion fluids from gangue quartz and sulfides deposited during later stages of ore deposition in both deposits failed to provide accurate and geologically meaningful two-point (fluid-residue) tie lines in Rb-Sr isochron diagrams. However, Sr released from fluid inclusions generally reveals lower initial 87Sr/86Sr ratios than the respective residues and shows affinities to 87Sr/86Sr (T=200 Ma) values of Indosinian-Yanshanian granitoids, both at Woxi and LJP. Pb stepwise leaching of scheelite and sulfides did not result in sufficient spreads in Pb isotope diagrams and therefore no information regarding exact mineralization ages in the two deposits could be deduced. Overall, ore Pb isotopes reveal upper crustal signatures and are compatible with Pb isotope signatures of the predominant Precambrian slates in the Woxi area. Steep trajectories through late stage quartz-sulfide mineralization in Pb isotope diagrams may hint at mixing scenarios involving Pb from the host rocks and a component with lower 207Pb/204Pb and 208Pb/204Pb ratios relative to 206Pb/204Pb ratios, which cannot be linked to any known reservoir in the XUB mining district. Sr isotopes of four out of seven residual sulfide samples from Woxi plot along a paleomixing line at an age of 199 ± 8 Ma, supporting a mixing scenario for the fluids indicated by the Pb isotopes and pointing to a possible genetic relationship with the emplacement of Indosinian—Yanshanian granitoids. The budgets of REEs, Rb-Sr and Pb in the original fluids were severely affected by contamination of these elements apparently during intense wall rock alteration but, after sealing of the major pathways, the mineralizing fluids tend to have better preserved their original signatures. These attest a genetic relationship between the metallogeny in the XUB W-Sb-Au province and the emplacement of Indosinian-Yanshanian granitoids during Mesozoic intracontinental tectonic uplift and thrusting.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial handling: B. Lehmann  相似文献   
956.
The major Ghanaian lode gold deposits are preferentially aligned along the western and eastern contacts of the Kumasi Basin with the Ashanti and Sefwi Belts, respectively. The investigated area of the Abawso small-scale concession, covering the workings of the old Ettadom mine, is situated 3 km west of the lithological contact of the Birimian metavolcanic rocks of the Akropong Belt in the east with the Birimian metasedimentary rocks of the Kumasi Basin in the west. The rocks of the Abawso concession represent a steeply NW-dipping limb of a SE-verging anticline with an axis plunging to the SW. Quartz veining occurs predominantly in the form of en échelon dilatational veins along NNE–SSW-striking shear zones of a few metres width and shows evidence of brittle and ductile deformation. Also stockwork-style quartz veining occurs in the vicinity of the main shaft of the old Ettadom mine. Hydrothermal alteration includes sericitisation, sulphidation and locally carbonatisation. The auriferous quartz veins mainly follow the trend of brittle to ductile deformed quartz veins; however, some occur in stockwork. Fluid inclusion studies reveal a large number of H2O inclusions along intragranular trails in auriferous quartz vein samples, as well as an overall dominance of H2O and H2O-CO2 inclusions over CO2 inclusions. Textural observations and physico-chemical fluid inclusion properties indicate post-entrapment modifications for all quartz vein samples due to grain boundary migration recrystallisation. This process is interpreted to be responsible for the generation of the CO2 inclusions from a H2O-CO2 parent fluid. In comparison with mineralisation at the Ashanti and Prestea deposits, which are characterised by CO2±N2 inclusions, the observed inclusion assemblage may be due to a shallower crustal level of mineralisation, or different degrees and styles of recrystallisation, or a less pronounced development of laminated quartz veins due to comparably restricted pressure fluctuations. Furthermore, the microthermometric observations allow the reconstruction of a possible retrograde P-T path, depicting near-isothermal decompression in the P-T range of the brittle/ductile transition.Editorial handling: E. Frimmel  相似文献   
957.
958.
The Moulin de Chéni orogenic gold deposit is the only granite-hosted deposit of the Saint-Yrieix district, French Massif Central. It occurs in 338±1.5 Ma-old peraluminous leucogranites and is characterized by intense microfracturing and bleaching of the granite in relation to pervasive sulfide crystallization. Formation of quartz veins and gold deposition occurred in two successive stages: an early mesozonal stage of quartz-sulfide (Fe-As-S) deposition, usually devoid of gold and a late epizonal stage of base metal and gold deposition. Both stages postdate peak metamorphism and granite intrusion. The genesis of the deposit is the result of four successive fluid events: (1) Percolation of aqueous-carbonic metamorphic fluids under an assumed lithostatic regime of 400–450 °C, at a maximum depth of 13 km; (2) Formation of the main quartz lodes with coeval K-alteration and introduction of As and S from aqueous-carbonic fluids percolating along regional faults. Arsenopyrite and pyrite deposition was linked to the alteration of Fe-silicates into K-feldspar and phengite at near-constant iron content in the bulk granite. Temperature was similar to that of the preceding stage, but pressure decreased to 100–50 MPa, suggesting rapid uplift of the basement up to 7.5 km depth; (3) The resulting extensional tectonic leads to the deposition of gold, boulangerite, galena and sphalerite in brecciated arsenopyrite and pyrite from aqueous fluids during a mixing process. Temperature and salinity decrease from 280 to 140 °C and 8.1 wt% eq. NaCl to 1.6 wt% eq. NaCl, respectively; (4) Sealing of the late fault system by barren comb quartz which precipitated from dilute meteoric aqueous fluids (1.6 wt% eq. NaCl to 0.9 wt% eq. NaCl) under hydrostatic conditions at 200–150 °C.Editorial handling: B. Lehmann  相似文献   
959.
The influence on the structure of Fe2+ Mg substitution was studied in synthetic single crystals belonging to the MgCr2O4–FeCr2O4 series produced by flux growth at 900–1200 °C in controlled atmosphere. Samples were analyzed by single-crystal X-ray diffraction, electron microprobe analyses, optical absorption-, infrared- and Mössbauer spectroscopy. The Mössbauer data show that iron occurs almost exclusively as IVFe2+. Only minor Fe3+ (<0.005 apfu) was observed in samples with very low total Fe. Optical absorption spectra show that chromium with few exceptions is present as a trivalent cation at the octahedral site. Additional absorption bands attributable to Cr2+ and Cr3+ at the tetrahedral site are evident in spectra of end-member magnesiochromite and solid-solution crystals with low ferrous contents. Structural parameters a0, u and T–O increase with chromite content, while the M–O bond distance remains nearly constant, with an average value equal to 1.995(1) Å corresponding to the Cr3+ octahedral bond distance. The ideal trend between cell parameter, T–O bond length and Fe2+ content (apfu) is described by the following linear relations: a0=8.3325(5) + 0.0443(8)Fe2+ (Å) and T–O=1.9645(6) + 0.033(1)Fe2+ (Å) Consequently, Fe2+ and Mg tetrahedral bond lengths are equal to 1.998(1) Å and 1.965(1) Å, respectively.  相似文献   
960.
This paper presents evaluation of cation distributions from diffraction data collected at high T, P, and is an extension of the spinel structure modelling procedure by Lavina et al. (2002). Optimised cation-to-oxygen distances are modified for thermal expansion and compressibility at T and P of interest following Hazen and Prewitt (1977) and Hazen and Yang (1999). The procedure is applied to literature data concerning hercynite, spinel s.s., Zn aluminate, Zn ferrite, magnetite and the (Fe3O4)1– x (MgAl2O4) x join. Calculated cation distribution is strongly affected by standard deviations in cell parameters and oxygen coordinates. The underestimated values often reported in the literature for powder profile refinements may strongly affect the cation distribution; however, if standard deviations are increased to physically realistic values, consistent results are obtained. For P up to 10 GPa, reasonable evaluations of cation distribution are obtained for spinel s.s., Zn aluminate and magnetite, whereas for Zn ferrite they are limited to 1.8 GPa. For P beyond 10 GPa, compressibility cannot be assumed to be linear; the relationship between cell parameter and pressure is well-defined, but the inaccuracy of oxygen coordinate prevents simple modelling of bond distances with pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号