首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46099篇
  免费   1441篇
  国内免费   1025篇
测绘学   1227篇
大气科学   3741篇
地球物理   10013篇
地质学   17069篇
海洋学   3959篇
天文学   9232篇
综合类   277篇
自然地理   3047篇
  2022年   307篇
  2021年   536篇
  2020年   530篇
  2019年   582篇
  2018年   1148篇
  2017年   1079篇
  2016年   1353篇
  2015年   957篇
  2014年   1392篇
  2013年   2397篇
  2012年   1751篇
  2011年   2128篇
  2010年   1915篇
  2009年   2482篇
  2008年   2103篇
  2007年   2098篇
  2006年   1990篇
  2005年   1470篇
  2004年   1392篇
  2003年   1258篇
  2002年   1235篇
  2001年   1043篇
  2000年   1012篇
  1999年   842篇
  1998年   890篇
  1997年   820篇
  1996年   712篇
  1995年   686篇
  1994年   609篇
  1993年   522篇
  1992年   497篇
  1991年   472篇
  1990年   542篇
  1989年   451篇
  1988年   415篇
  1987年   516篇
  1986年   406篇
  1985年   527篇
  1984年   633篇
  1983年   564篇
  1982年   546篇
  1981年   497篇
  1980年   499篇
  1979年   441篇
  1978年   414篇
  1977年   419篇
  1976年   394篇
  1975年   378篇
  1974年   395篇
  1973年   417篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Settling velocity is one of the important parameters in sediment transport modeling of estuaries. The methods adopted for its determination vary from theoretical equations to experimental methods. The theoretical equation generally adopted in the 1DV model include assumptions in order to simplify the solution. It is generally assumed that either the condition is steady or the vertical diffusion is negligible. This study evaluated the relative importance of the two assumptions made for the estimation of settling velocity. Two approaches were adopted: unsteady and negligible vertical diffusion (NS-NVD) and steady with vertical diffusion (S-VD) to estimate the settling velocity. The Muthupet Estuary in the Coromandal coast of India was selected for the study. The S-VD approach estimated settling velocity fairly well at the two locations with appreciable vertical diffusion. The NS-NVD approach was observed to be superior for estimating settling velocity at shallow reaches of the estuary having low flow velocity. The calculated settling velocity was further applied in 1DV model to predict the suspended sediment concentration. The S-VD approach predicted suspended sediment concentration at those locations with appreciable vertical diffusion with an R2 value of 0.82 against 0.67 for the NS-NVD approach. At the other shallow reach of the estuary with low flow velocity, the NS-NVD approach gave an R2 value of 0.822 against 0.71 for the S-VD approach. The vertical diffusion was observed to play a secondary role at those locations which are shallow with a water depth of 0.6 m and with a low flow velocity of the order of 0.01 m/s. The study demonstrated that localized hydrodynamic conditions influence the method adopted for the estimation of settling velocity.  相似文献   
22.
Sustainable fuels legislation and volatility in energy prices have put additional pressures on the forestry sector to intensify the harvesting of biomass for “advanced biofuel” production. To better understand how residual biomass removal after harvest affects forest hydrology in relatively low slope terrain, a Before-After-Control-Impact (BACI) study was conducted in the USDA Forest Service's Marcell Experimental Forest, Minnesota, USA. Hydrological measurements were made from 2010–2013 on a forested hillslope that was divided into three treatment blocks, where one block was harvested and residual biomass removed (Biomass Removed), the second was harvested and residual biomass left (Biomass Left), and the last block was left as an Unharvested Control. The pre-harvest period (2 years) was 2010–11 and post-harvest (2 years) was 2012–13. Water table elevation at the upslope and downslope position, subsurface runoff, and soil moisture were measured between May–November. Mixed effect statistical models were used to compare both the before-after and “control” treatment ratios (ratios between harvested hillslopes and the Unharvested Control hillslope). Subsurface runoff significantly increased (p < .05) at both harvested hillslopes but to a greater degree on the Biomass Left hillslope. Greater subsurface runoff volumes at both harvested hillslopes were driven by substantial increases during fall, with additional significant increases during summer on the Biomass Left hillslope. The hydrological connectivity, inferred from event runoff ratios, increased due to harvesting at both hillslopes but only significantly on the Biomass Left hillslope. The winter harvest minimized soil disturbance, resulting in no change to the effective hydraulic conductivity distribution with depth. Thus, the observed hydrological changes were driven by increased effective precipitation and decreased evapotranspiration, increasing the duration that both harvested hillslopes were hydrologically active. The harvesting of residual biomass appears to lessen hydrological connectivity relative to leaving residual biomass on the hillslope, potentially decreasing downstream hydrological impacts of similar forestry operations.  相似文献   
23.
24.
We report on the investigation of presolar grain inventories of hydrated lithic clasts in three metal-rich carbonaceous chondrites from the CR clan, Acfer 182 (CH3), Isheyevo (CH3/CBb3), and Lewis Cliff (LEW) 85332 (C3-un), as well as the carbon- and nitrogen-isotopic compositions of the fine-grained clast material. Eleven presolar silicate grains as well as nine presolar silicon carbide (SiC) grains were identified in the clasts. Presolar silicate abundances range from 4 to 22 parts per million (ppm), significantly lower than in pristine meteorites and interplanetary dust particles (IDP), and comparable to recent findings for CM2s and CR2 interchondrule matrix. SiC concentrations lie between 9 and 23 ppm, and are comparable to the values for CI, CM, and CR chondrites. The results of our investigation suggest similar alteration pathways for the clast material, the interchondrule matrix of the CR2 chondrites, and the fine-grained fraction of CM2 chondrites. Fine-grained matter of all three meteorites contains moderate to high 15N-enrichments (~50‰ ≤ δ15N ≤ ~1600‰) compared to the terrestrial value, indicating the presence of primitive organic material. We observed no correlation between 15N-enrichments and presolar dust concentrations in the clasts. This is in contrast to the findings from a suite of primitive IDPs, which display in several cases enhanced bulk 15N/14N ratios and high presolar grain abundances of several hundred or even thousand ppm. The bulk 15N/14N ratios of the clasts are comparable to the range for primitive IDPs, suggesting a nitrogen carrier less susceptible to destruction by aqueous alteration than silicate stardust.  相似文献   
25.
Impact angle plays a significant role in determining the fate of the projectile. In this study, we use a suite of hypervelocity impact experiments to reveal how impact angle affects the preservation, distribution, and physical state of projectile residues in impact craters. Diverse types of projectiles, including amorphous silicates, crystalline silicates, and aluminum, in two sizes (6.35 and 12.7 mm), were launched into blocks of copper or 6061 aluminum at speeds between 1.9 and 5.7 km s−1. Crater interiors preserve projectile residues in all cases, including conditions relevant to the asteroid belt. These residues consist of projectile fragments or projectile-rich glasses, depending on impact conditions. During oblique impacts at 30° and 45°, the uprange crater wall preserves crystalline fragments of the projectile. The fragments of water-rich projectiles such as antigorite remain hydrated. Several factors contribute to enhanced preservation on the uprange wall, including a weaker shock uprange, uprange acceleration as the shock reflects off the back of the projectile, and rapid quenching of melts along the projectile–target interface. These findings have two broader implications. First, the results suggest a new collection strategy for flyby sample return missions. Second, these results predict that the M-type asteroid Psyche should bear exogenic, impactor-derived debris.  相似文献   
26.
We present our observations of the galaxy UGS 5600 with a long-slit spectrograph (UAGS) and a multipupil field spectrograph (MPFS) attached to the 6-m Special Astrophysical Observatory telescope. Radial-velocity fields of the stellar and gaseous components were constructed for the central region and inner ring of the galaxy. We proved the existence of two nearly orthogonal kinematic subsystems and conclude that UGC 5600 is a galaxy with an inner polar ring. In the circumnuclear region, we detected noncircular stellar motions and suspected the existence of a minibar. The emission lines are shown to originate in H II regions. We estimated the metallicity from the intensity ratio of the [N II]λ6583 and Hα lines to be nearly solar, which rules out the possibility that the polar ring was produced by the accretion of gas from a dwarf companion.  相似文献   
27.
Abstract— The possibility of volcanism on Mercury has been a topic of discussion since Mariner 10 returned images of half the planet's surface showing widespread plains material. These plains could be volcanic or lobate crater ejecta. An assessment of the mechanics of the ascent and eruption of magma shows that it is possible to have widespread volcanism, no volcanism on the surface whatsoever, or some range in between. It is difficult to distinguish between a lava flow and lobate crater ejecta based on morphology and morphometry. No definite volcanic features have been identified on Mercury. However, known lunar volcanic features cannot be identified in images with similar resolutions and viewing geometries as the Mariner 10 dataset. Examination of high‐resolution, low Sun angle Mariner 10 images reveals several features which are interpreted to be flow fronts; it is unclear if these are volcanic flows or ejecta flows. This analysis implies that a clear assessment of volcanism on Mercury must wait for better data. MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging) will take images with viewing geometries and resolutions appropriate for the identification of such features.  相似文献   
28.
C.B Olkin  L.H Wasserman  O.G Franz 《Icarus》2003,164(1):254-259
The mass ratio of Charon to Pluto is a basic parameter describing the binary system and is necessary for determining the individual masses and densities of these two bodies. Previous measurements of the mass ratio have been made, but the solutions differ significantly (Null et al., 1993; Young et al., 1994; Null and Owen, 1996; Foust et al., 1997; Tholen and Buie, 1997). We present the first observations of Pluto and Charon with a well-calibrated astrometric instrument—the fine guidance sensors on the Hubble Space Telescope. We observed the motion of Pluto and Charon about the system barycenter over 4.4 days (69% of an orbital period) and determined the mass ratio to be 0.122±0.008 which implies a density of 1.8 to 2.1 g cm−3 for Pluto and 1.6 to 1.8 g cm−3 for Charon. The resulting rock-mass fractions for Pluto and Charon are higher than expected for bodies formed in the outer solar nebula, possibly indicating significant postaccretion loss of volatiles.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号