首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   100篇
地质学   40篇
海洋学   19篇
天文学   38篇
自然地理   9篇
  2022年   5篇
  2021年   9篇
  2020年   2篇
  2019年   7篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   4篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   11篇
  2010年   8篇
  2009年   10篇
  2008年   9篇
  2007年   10篇
  2006年   11篇
  2005年   2篇
  2004年   2篇
  2003年   7篇
  2002年   1篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1959年   1篇
排序方式: 共有209条查询结果,搜索用时 109 毫秒
41.
Based on the paleomagnetic study of intrusive and explosive Permian-Triassic traps in the Angara River basin, Siberian Platform, it is established that the formation of the traps was marked by three short and highly intense bursts in magmatic activity, which resulted in the intrusion of three large dolerite sills (Tolstomysovsky, Padunsky and Tulunsky) and the deposition of the tuffs of the Kapaevsky Formation. These magmatic bursts occurred against the long-lived less intense background magmatism, which caused the formation of small intrusive bodies and tuff sequences. The geochronological data and correlation of the Angara traps to the effusive trap sequences in the north of the Siberian Platform (Norilsk and Maymecha-Kotuy regions) indicate that intrusion of the Tolstomysovsky sill and eruption of its comagmatic tuffs of the Kapaevsky Formation occurred in the Early Triassic. The obtained paleomagnetic data contradict the existing idea that the Padunsky and Tulunsky sills are coeval. Moreover, these data show that the magmatic bodies of different ages were mistakenly referred to the same sill.  相似文献   
42.
The present-day state of studies of vibrationally excited N2 and O2 in the upper atmosphere and the mechanisms by which these molecules affect the electron density and temperature in the ionosphere and neutral densities in the upper atmosphere are considered.  相似文献   
43.
We consider the resemblance between the ion composition of the fraction of soluble aerosols and gaseous admixtures in the atmospheric surface layer at the high-level Mondy station (East Sayan), those in the Listvyanka settlement south of Lake Baikal, in the city of Irkutsk, and at the Primorskaya station near the city of Ussuriysk (Primorskii krai). We use measurement data on the concentrations of the following ions: HCO 3 ? , SO 4 2? , NO 3 ? , Cl?, H+, Na+, K+, Mg2+, Ca2+ in the soluble fraction of aerosols and gases HNO3, HCl, NH3, and SO2 in air samples over a 10-year period conducted in the mode of online monitoring. We found the lognormal form of distributions of concentrations of each of the abovementioned components according to the number of samples. A versatile scheme of the distribution of mean geometric concentrations of atmospheric components was proposed for all four groups.  相似文献   
44.
The three-dimensional nonstationary theoretical model of the concentrations and temperatures of electrons and ions in the ionospheric F region and plasmasphere at low and middle latitudes is used to study variations in the concentration NmF2 and height hmF2 of the ionospheric F2 layer under the action of the plasma zonal drift in the direction geomagnetic west-geomagnetic east perpendicularly to the electric E and geomagnetic B fields. The calculated and measured values of NmF2 and hmF2 for 16 ionospheric sounding stations during the quiet geomagnetic period on March 28–29, 1964 at low solar activity are compared. This comparison made it possible to correct the input parameters of the model: [O] from the NRLMSISE-00 model and the meridional component of the neutral wind velocity from the HWW90 model. It is shown that the nighttime NmF2 values decrease up to twice at low solar activity in the low-latitude ionosphere, and the hmF2 values change by up to 16 km, if the plasma zonal E×B drift is not taken into account. Under the daytime conditions, the influence of the plasma zonal E×B drift on NmF2 can be neglected.  相似文献   
45.
Solar System Research - Ionizing radiation is one of the main factors that destroy biomolecules in extraterrestrial conditions. The effects of radiation depend on the conditions of the exposure...  相似文献   
46.
It is shown that X-ray radiation of neutron stars with magnetic fieldsB=1011–1013 G near cyclotron resonances=s B (s=1,2,...) is deeply affected by such quantum effects as electron-positron vacuum polarization (significant at V=3×1028 n e –1 (B/B C 4)1, whereB C =4.4×1013G), the quantizing character of the magnetic field (significant atV=3 x 1028 n e –1 (B/B c)41 whereB c =4.4 x 1013G), the non-harmonic character of the Landau levels, and the quantum recoil of electrons. The latter two factors shift the resonances by the frequency –s 2 B (B/2B c )sin2, being the angle between the direction of radiation propagation and the magnetic field. IfVV 0 (for 1,V 0–1=(mc 2/2T)1/2), the normal mode (NM) polarizations, as well as the absorption coefficientk 1 of the extraordinary NM in the Doppler core of the first resonance (|–| B cos ), is only slightly affected by varyingb and/orV, whereas for the ordinary NM (at 1)k 2k 1 2[b + (3 + tan2–2V)2]k 1. For sufficiently largeb and/orV the quantum effects amplify resonant absorption of the ordinary NM at B , with spin-flip transitions playing a major role atb1+V 2. IfVV 0, the coefficientsk 1 andk 2 in the Doppler core of the resonance are of the same order and acquire some peculiar features (shifts, intersections, etc.), with the NM polarizations depending sharply on and being strongly non-orthogonal. AtVV 0,k 2=k 1(cos2 +B/2B C ) and the polarizations are almost linear. Near high resonances (s2), as a rule,k 1,2(1 + b) s–1 2s–3 i.e., absorption increases withb due to replacement of the thermal energy of the transverse motion of electron,T, by the magnetic energy B . The above effects should be taken into account for an interpretation of observational data on X-ray pulsars (e.g., Her X-1) and other X-ray sources associated with neutron stars.  相似文献   
47.
48.
Intensity, polarization, and cooling rate of the two-photon annihilation radiation are studied in detail in the case of one-dimensional power-law distributions of electrons and positrons, assuming that they occupy the ground Landau level in a strong magnetic fieldB1010–1012 G. Simple analytical expressions for limiting cases are obtained and results of numerical calculations of radiation characteristics are presented. Power-lawe ± distributions ± ± –k are shown to generate power-law spectra of the annihilation radiation atEmc 2 andEmc 2, with indices depending on the direction of radiation. The annihilation spectra at =0 show the largest blue-shifts of their maxima and the hardest high-energy tailsI(Emc 2, =0)E –(k–1). The blue-shifts reduce, and the hard tials steepen, with increasing . At >(2mc 2/E)1/2 the slopes of the high-energy tails rapidly transform to that at =2,I(Emc 2, =/2)E –(2k+3). The direction-integrated spectraS(E) also display the power-law tials at low and high energies,S(Emc 2)E –(k+1). The total annihilation rate and energy losses decrease with decreasingk, being higher than for the isotropice ± power-law distributions at the samek. The radiation is linearly polarized in the plane formed by the magnetic field and wave-vector. The polarization degreeP is maximum atEmc 2:P max0.6 for =/2. Annihilation features and power-law-like hard tails observed in many gamma-ray burst spectra may be associated with the annihilation radiation of the magnetized power-law distributed plasma near neutron stars. Comparison of the observed and theoretical spectra allows one to estimate the power-law index of thee e +-distribution and the gravitational redshift factor in the radiating region.  相似文献   
49.
We consider an inverse problem of determination of short-period (high-frequency) radiator in an extended earthquake source. This radiator is assumed to be noncoherent (i.e., random), it can be described by its power flux or brightness (which depends on time and location over the extended source). To decide about this radiator we try to use temporal intensity function (TIF) of a seismic waveform at a given receiver point. It is defined as (time-varying) mean elastic wave energy flux through unit area. We suggest estimating it empirically from the velocity seismogram by its squaring and smoothing. We refer to this function as observed TIF. We believe that one can represent TIF produced by an extended radiator and recorded at some receiver point in the earth as convolution of the two components: (1) ideal intensity function (ITIF) which would be recorded in the ideal nonscattering earth from the same radiator; and (2) intensity function which would be recorded in the real earth from unit point instant radiator (intensity Green's function, IGF). This representation enables us to attempt to estimate an ITIF of a large earthquake by inverse filtering or deconvolution of the observed TIF of this event, using the observed TIF of a small event (actually, fore-or aftershock) as the empirical IGF. Therefore, the effect of scattering is stripped off. Examples of the application of this procedure to real data are given. We also show that if one can determine far-field ITIF for enough rays, one can extract from them the information on space-time structure of the radiator (that is, of brightness function). We apply this theoretical approach to short-periodP-wave records of the 1978 Miyagi-oki earthquake (M=7.6). Spatial and temporal centroids of a short-period radiator are estimated.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号