首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   5篇
测绘学   3篇
大气科学   8篇
地球物理   30篇
地质学   45篇
海洋学   1篇
天文学   6篇
综合类   1篇
自然地理   1篇
  2024年   1篇
  2022年   2篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   10篇
  2013年   7篇
  2012年   6篇
  2011年   15篇
  2010年   4篇
  2009年   9篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有95条查询结果,搜索用时 859 毫秒
41.
42.
Twenty-four years of AVHRR-derived sea surface temperature (SST) data (1985–2008) and 35 years of NOCS (V.2) in situ-based SST data (1973–2008) were used to investigate the decadal scale variability of this parameter in the Mediterranean Sea in relation to local air–sea interaction and large-scale atmospheric variability. Satellite and in situ-derived data indicate a strong eastward increasing sea surface warming trend from the early 1990s onwards. The satellite-derived mean annual warming rate is about 0.037°C year–1 for the whole basin, about 0.026°C year–1 for the western sub-basin and about 0.042°C year–1 for the eastern sub-basin over 1985–2008. NOCS-derived data indicate similar variability but with lower warming trends for both sub-basins over the same period. The long-term Mediterranean SST spatiotemporal variability is mainly associated with horizontal heat advection variations and an increasing warming of the Atlantic inflow. Analysis of SST and net heat flux inter-annual variations indicates a negative correlation, with the long-term SST increase, driving a net air–sea heat flux decrease in the Mediterranean Sea through a large increase in the latent heat loss. Empirical orthogonal function (EOF) analysis of the monthly average anomaly satellite-derived time series showed that the first EOF mode is associated with a long-term warming trend throughout the whole Mediterranean surface and it is highly correlated with both the Eastern Atlantic (EA) pattern and the Atlantic Multidecadal Oscillation (AMO) index. On the other hand, SST basin-average yearly anomaly and NAO variations show low and not statistically significant correlations of opposite sign for the eastern (negative correlation) and western (positive correlation) sub-basins. However, there seems to be a link between NAO and SST decadal-scale variations that is particularly evidenced in the second EOF mode of SST anomalies. NOCS SST time series show a significant SST rise in the western basin from 1973 to the late 1980s following a large warming of the inflowing surface Atlantic waters and a long-term increase of the NAO index, whereas SST slowly increased in the eastern basin. In the early 1990s, there is an abrupt change from a very high positive to a low NAO phase which coincides with a large change in the SST spatiotemporal variability pattern. This pronounced variability shift is followed by an acceleration of the warming rate in the Mediterranean Sea and a change in the direction (from westward to eastward) of its spatial increasing tendency.  相似文献   
43.
Existing loading protocols for quasi-static cyclic testing of structures are based on recordings from regions of high seismicity. For regions of low to moderate seismicity they overestimate imposed cumulative damage demands. Since structural capacities are a function of demand, existing loading protocols applied to specimens representative of structures in low to moderate seismicity regions might underestimate structural strength and deformation capacity. To overcome this problem, this paper deals with the development of cyclic loading protocols for European regions of low to moderate seismicity. Cumulative damage demands imposed by a set of 60 ground motion records are evaluated for a wide variety of SDOF systems that reflect the fundamental properties of a large portion of the existing building stock. The ground motions are representative of the seismic hazard level corresponding to a 2 % probability of exceedance in 50 years in a European moderate seismicity region. To meet the calculated cumulative damage demands, loading protocols for different structural types and vibration periods are developed. For comparison, cumulative seismic demands are also calculated for existing protocols and a set of records that was used in a previous study on loading protocols for regions of high seismicity. The median cumulative demands for regions of low to moderate seismicity are significantly less than those of existing protocols and records of high seismicity regions. For regions of low to moderate seismicity the new protocols might therefore result in larger strength and deformation capacities and hence in more cost-effective structural configurations or less expensive retrofit measures.  相似文献   
44.
45.
Two approaches for the modelling of turbulence in vegetated flows have been developed in the past. The “microscopic” approach which is straightforward but limited to simple cases and the “macroscopic” approach which is based on Volume Average Theory (VAT). In this study, aspects of Volume-Average (VA) analysis and modelling are investigated for turbulent vegetated flow using computed three-dimensional results from the solution of the Reynolds-Averaged Navier-Stokes (RANS) equations around a representative vegetal element. In particular (a) the VA transport equations for k and ε, based on VAT, are properly derived, (b) the Boussinesq hypothesis for the VA quantities, employed in 〈k〉-〈ε〉 turbulence models is tested, and (c) the values of the coefficients used in such turbulence models are assessed in comparison with those used in the classical turbulence models.  相似文献   
46.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a hysteretic model capturing the local shear response of shear‐deficient R/C elements is described in detail, with emphasis on post‐peak behaviour; it differs from existing models in that it considers the localisation of shear strains after the onset of shear failure in a critical length defined by the diagonal failure planes. Additionally, an effort is made to improve the state of the art in post‐peak shear response modelling, by compiling the largest database of experimental results for shear and flexure‐shear critical R/C columns cycled well beyond the onset of shear failure and/or up to the onset of axial failure, and developing empirical relationships for the key parameters defining the local backbone post‐peak shear response of such elements. The implementation of the derived local hysteretic shear model in a computationally efficient beam‐column finite element model with distributed shear flexibility, which accounts for all deformation types, will be presented in a companion paper.  相似文献   
47.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a computationally efficient member‐type finite element model for the hysteretic response of shear critical R/C frame elements up to the onset of axial failure is presented; it accounts for shear‐flexure interaction and considers, for the first time, the localisation of shear strains, after the onset of shear failure, in a critical length defined by the diagonal failure plane. Its predictive capabilities are verified against experimental results of column and frame specimens and are shown to be accurate not only in terms of total response, but also with regard to individual deformation components. The accuracy, versatility, and simplicity of this finite element model make it a valuable tool in seismic analysis of complex R/C buildings with shear deficient structural elements.  相似文献   
48.
We present an integrated study of subsurface and surficial karst landforms to unravel the uplift history of karst landscape in a tectonically-active area. To this end, we apply a multidisciplinary approach by combining cave geomorphology and Th/U dating of speleothems with remote sensing plus geophysical imaging of surface landforms. We use as an example Mt. Menikio in northern Greece where four caves share well-defined epiphreatic/shallow phreatic characteristics that are related to the distribution of surface and buried doline fields and provide evidence for three distinct water table stillstands (e.g. expressed as cave levels) now lying at ~130 m, ~800 m and ~1600 m a.m.s.l. Our dating constraints delimit the age of the lower water table stillstand prior to 77 ka ago and imply a maximum rate of relative base level drop of 0.45 mma-1, which is consistent with relative tectonic uplift rate estimates along currently active normal faults. We interpret the elevation of the higher water table stillstands to reflect earlier phases of uplift related to the regional tectonic events associated with the development of the North Anatolian Fault and the Northern Aegean area. Our analysis shows that the combined study of epiphreatic/shallow phreatic caves and surficial karst landforms together, is a robust way to investigate the uplift history of a karst landscape in a tectonically-active setting. © 2019 John Wiley & Sons, Ltd.  相似文献   
49.
Pindos foreland basin in west Peloponnesus (Tritea, Hrisovitsi and Finikounda sub‐basins) during Late Eocene to Early Oligocene was an underfilled foreland basin. The basin's geometry was affected by the presence of internal thrusting and transfer faults, causing changes in depth and width. Due to internal thrusting, the foreland basin changed through time from a uniform to non‐uniform configuration, whereas transfer faults have an intensive impact on depositional environments within the basin. Internal thrusting (Gavrovo, internal and middle Ionian thrusts) activated synchronously with the major Pindos Thrust, creating intrabasinal highs that influenced palaeocurrent directions. The transfer faults cross‐cut the intrabasinal highs and produced low relief areas that act as pathways for sediment distribution. The sediments are thicker and sandstone‐rich on the downthrown sides of the transfer faults. In these areas, sandstone reservoirs could be produced. Such tectonically active areas constitute promise for oil and gas reservoirs and traps.  相似文献   
50.
Tumuli are artificially erected small hills that cover monumental tombs or graves. In this work, the surface three-dimensional (3D) Electrical Resistivity Tomography (ERT) method, composed of dense parallel two-dimensional (2D) tomographies, was used to investigate the properties of the tumuli filling material and to resolve buried archaeological structures inside the tumuli.The effectiveness of the method was investigated by numerical modeling and through 3D inversion of synthetic apparent resistivity data. A resistivity model that simulates the inhomogeneous tumulus material and the tombs that are buried inside the tumulus was assumed. The Dipole–Dipole (DD), Pole–Dipole (PD), Pole–Pole (PP), Gradient (GRAD), Midpoint-Potential-Referred (MPR) and Schlumberger Reciprocal (SCR) arrays, which are suitable for multichannel resistivity instruments, were tested. The tumulus topography (pyramid or capsized cup) was incorporated into the inversion procedure through a distorted finite element mesh. The inversion procedure was based on a smoothness constrained Gauss–Newton algorithm in which the Active Constraint Balancing (ACB) method was also applied in order to enhance the least-squares resolving power and stability.Synthetic modeling showed that the different tumulus layers and the horizontal contact of the artificial tumulus material with the natural background soil were reconstructed by all of the tested electrode arrays. Generally, PD and the GRAD arrays comprise the optimum choices to investigate the subsurface properties of a tumulus and locate buried tombs. The MPR model was inferior to the GRAD model, while the DD, PP and SCR models had the poorest resolution. It was also shown that the inversion models are practically independent from the survey direction and the topography shape of the tumulus.The real field data collected employing the PD array along a small tumulus from the archaeological site of Vergina in northern Greece enhanced the synthetic modeling results. The inversion model outlined a number of archaeological structures that exhibit a high possibility to correlate with graves. Overall, this work signifies that the surface 3D ERT method can provide a valuable tool in the non-destructive archaeological exploration of tumuli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号