首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   3篇
  国内免费   1篇
测绘学   2篇
大气科学   3篇
地球物理   13篇
地质学   29篇
天文学   7篇
自然地理   1篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   11篇
  2017年   8篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
51.
Kaftar Lake is a high‐altitude fresh water lake located in High Zagros, south of Iran. Despite the high annual evaporation to precipitation ratio in the area, lake water electrical conductivity is usually lower than 1000 µS/cm, this may be due to high seepage from the floor of the lake. Therefore, the hypothesis of possible underground connections between Namdan Basin, where the lake is located, and the surrounding basins with lower elevation (Aspas and Dehbid Basins) was investigated. Hydrogeology, hydrochemistry, and stable isotopes data of the lake and surrounding basins along with the lake water balance study were applied to test the hypothesis. Results indicate that Kaftar Lake has no connection with Aspas Basin in south, but it is hydraulically connected to Dehbid Basin. In Dehbid Basin, “Ghasr_e_Yaghoob spring” (average discharge ?1200 L/s) emerges from a small outcrop (about 0.8 km2) of Daryan limestone Formation, where this outcrop is much smaller than the required recharge area for such average discharge rate. The study shows that this spring is recharged by Kaftar Lake and Namdan Basin aquifer, through Daryan Formation of Gandboee Syncline located to the northern part of the lake.  相似文献   
52.
Toroud Watershed in Semnan Province, Iran is a prone area to gully erosion that causes to soil loss and land degradation. To consider the gully erosion, a comprehensive map of gully erosion susceptibility is required as useful tool for decreasing losses of soil. The purpose of this research is to generate a reliable gully erosion susceptibility map (GESM) using GIS-based models including frequency ratio (FR), weights-of-evidence (WofE), index of entropy (IOE), and their comparison to an expert knowledge-based technique, namely, Analytic Hierarchy Process (AHP). At first, 80 gully locations were identified by extensive field surveys and Google Earth images. Then, 56 (70%) gully locations were randomly selected for modeling process, and the remaining 26 (30%) gully locations were used for validation of four models. For considering geo-environmental factors, VIF and tolerance indices are used and among 18 factors, 13 factors including elevation, slope degree, slope aspect, plan curvature, distance from river, drainage density, distance from road, lithology, land use/land cover, topography wetness index (TWI), stream power index (SPI), normalized difference vegetation index (NDVI), and slope–length (LS) were selected for modeling aims. After preparing GESMs through the mentioned models, final maps divided into five classes including very low, low, moderate, high, and very high susceptibility. The receiver operating characteristic (ROC) curve and the seed cell area index (SCAI) as two validation techniques applied for assessment of the built models. The results showed that the AUC (area under the curve) in training data are 0.973 (97.3%), 0.912 (91.2%), 0.939 (93.9%), and 0.926 (92.6%) for AHP, FR, IOE, and WofE models, respectively. In contrast, the prediction rates (validating data) were 0.954 (95.4%), 0.917 (91.7), 0.925 (92.5%), and 0.921 (92.1%) for above models, respectively. Results of AUC indicated that four model have excellent accuracy in prediction of prone areas to gully erosion. In addition, the SCAI values showed that the produced maps are generally reasonable, because the high and very high susceptibility classes had very low SCAI values. The results of this research can be used in soil conservation plans in the study area.  相似文献   
53.
The generation of magnetic flux in the solar interior and its transport from the convection zone into the photosphere, the chromosphere, and the corona will be in the focus of solar physics research for the next decades. With 4 m class telescopes, one plans to measure essential processes of radiative magneto‐hydrodynamics that are needed to understand the nature of solar magnetic fields. One key‐ingredient to understand the behavior of solar magnetic field is the process of flux emergence into the solar photosphere, and how the magnetic flux reorganizes to form the magnetic phenomena of active regions like sunspots and pores. Here, we present a spectropolarimetric and imaging data set from a region of emerging magnetic flux, in which a proto‐spot without penumbra forms a penumbra. During the formation of the penumbra the area and the magnetic flux of the spot increases. First results of our data analysis demonstrate that the additional magnetic flux, which contributes to the increasing area of the penumbra, is supplied by the region of emerging magnetic flux. We observe emerging bipoles that are aligned such that the spot polarity is closer to the spot. As an emerging bipole separates, the pole of the spot polarity migrates towards the spot, and finally merges with it. We speculate that this is a fundamental process, which makes the sunspot accumulate magnetic flux. As more and more flux is accumulated a penumbra forms and transforms the proto‐spot into a full‐fledged sunspot (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
54.
The coupled steel plate shear wall (C-SPSW) configuration has been investigated by researchers as a means of improving the overturning stiffness and architectural flexibility of SPSW structures. While C-SPSWs have been shown to exhibit excellent seismic performance, the fabrication cost associated with the high number of moment-resisting connections used in such systems is a potential detraction to their use as an economical solution. Past research has shown that the hysteresis response of SPSWs with simple frame connections is significantly pinched, and as such, most seismic codes prohibit their use in high seismic areas. However, when used in the C-SPSW configuration, a dual system is formed in which the coupling beams not only improve resistance to overturning but also provide substantial lateral strength and energy dissipation capacity. This paper presents an exploration of the potential to improve the economy of C-SPSWs by using the simple boundary frame connections. First, employing the principles of plastic analysis, an attempt is made to quantify the contribution of the coupling beams to the overall lateral load resistance of the system. Then, to evaluate the seismic performance of such C-SPSW systems and allow for the comparison with that of the C-SPSWs with rigid frames, several prototypes are designed and analyzed using a series of nonlinear response history and pushover analyses. The results indicated that the C-SPSWs with simple boundary frames exhibited satisfactory seismic performance comparable with that of the C-SPSWs with rigid frames under both the 10/50 and 2/50 hazard levels, while allowing for reduced fabrication costs.  相似文献   
55.
Acta Geotechnica - Discrete randomly distributed fibers are commonly used to improve the engineering characteristics of the soil and thus soil properties such as shear strength, compressibility,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号