首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3910篇
  免费   184篇
  国内免费   50篇
测绘学   105篇
大气科学   306篇
地球物理   848篇
地质学   1485篇
海洋学   301篇
天文学   704篇
综合类   15篇
自然地理   380篇
  2021年   46篇
  2020年   72篇
  2019年   94篇
  2018年   102篇
  2017年   114篇
  2016年   132篇
  2015年   111篇
  2014年   132篇
  2013年   207篇
  2012年   126篇
  2011年   202篇
  2010年   161篇
  2009年   219篇
  2008年   196篇
  2007年   196篇
  2006年   178篇
  2005年   160篇
  2004年   153篇
  2003年   106篇
  2002年   109篇
  2001年   89篇
  2000年   80篇
  1999年   73篇
  1998年   60篇
  1997年   62篇
  1996年   58篇
  1995年   47篇
  1994年   33篇
  1993年   40篇
  1992年   39篇
  1991年   48篇
  1990年   26篇
  1989年   34篇
  1988年   37篇
  1987年   45篇
  1986年   26篇
  1985年   37篇
  1984年   37篇
  1983年   23篇
  1982年   33篇
  1981年   35篇
  1980年   35篇
  1979年   20篇
  1978年   22篇
  1977年   23篇
  1976年   21篇
  1975年   21篇
  1974年   28篇
  1973年   26篇
  1971年   19篇
排序方式: 共有4144条查询结果,搜索用时 281 毫秒
101.
Abstract:  Recent research has indicated river basin outlets draining linear sections of large, uplifting mountain belts often show a regularity of spacing, transverse to the main structural trend. A morphometric analysis of part of the Ruahine Range, on the North Island was undertaken to test whether drainage regularity may exist in smaller, younger mountain ranges. The ratio, R , of the half-width of the mountain belt, W , and the outlet spacing, S , was used to characterize drainage networks on the eastern side of the range. The spacing ratio for the range of 1.31 is lower than R results from studies of larger mountain belts ( R  = 1.91–2.23). We suggest the cause of this lower ratio is related to eastward migration of the Ruahine drainage divide.  相似文献   
102.
The Florida State University (FSU) multimodel superensemble forecast is evaluated against several other operational weather models for the Southeast Asia region. The superensemble technique has demonstrated its exceptional skills in forecasting precipitation, motion and mass fields compared to either individual global operational or ensemble mean forecasts. The motion field investigation for the season of 2001 reveals that the superensemble forecasts are closer to the observed data compared to the other global member operational models through its low systematic errors at the 850 hPa level. The FSU multimodel superensemble forecasts exhibit the lowest root mean square errors (RSMEs), the highest correlation against the best observed data and the lowest systematic errors compared to the other operational model members. These forecasts have the potential to provide better daily weather predictions over the Southeast Asia region, particularly during the early northeast monsoon that often causes heavy rainfall in the equatorial part of the Southeast Asia region.  相似文献   
103.
The Zambian Copperbelt forms the southeastern part of the 900-km-long Neoproterozoic Lufilian Arc and contains one of the world’s largest accumulations of sediment-hosted stratiform copper mineralization. The Nchanga deposit is one of the most significant ore systems in the Zambian Copperbelt and contains two major economic concentrations of copper and cobalt, hosted within the Lower Roan Group of the Katangan Supergroup. A Lower Orebody (copper only) and Upper Orebody (copper and cobalt) occur towards the top of arkosic units and within the base of overlying shales. The sulfide mineralogy includes pyrite, bornite, chalcopyrite, and chalcocite, although in the Lower Orebody, sulfide phases are partially or completely replaced by malachite and copper oxides. Carrollite is the major cobalt-bearing phase and is restricted to fault-propagation fold zones within a feldspathic arenite. Hydrothermal alteration minerals include dolomite, phlogophite, sericite, rutile, quartz, tourmaline, and chlorite. Quartz veins from the mine sequence show halite-saturated fluid inclusions, ranging from ~31 to 38 wt% equivalent NaCl, with homogenisation temperatures (ThTOT) ranging between 140 and 180°C. Diagenetic pyrites in the lower orebody show distinct, relatively low δ 34S, ranging from −1 to −17‰ whereas arenite- and shale-hosted copper and cobalt sulfides reveal distinctly different δ 34S from −1 to +12‰ for the Lower Orebody and +5 to +18‰ for the Upper Orebody. There is also a clear distinction between the δ 34S mean of +12.1±3.3‰ (n=65) for the Upper Orebody compared with +5.2±3.6‰ (n=23) for the Lower Orebody. The δ 13C of dolomites from units above the Upper Orebody give δ 13C values of +1.4 to +2.5‰ consistent with marine carbon. However, dolomite from the shear-zones and the alteration assemblages within the Upper Orebody show more negative δ 13C values: −2.9 to −4.0‰ and −5.6 to −8.3‰, respectively. Similarly, shear zone and Upper Orebody dolomites give a δ 18O of +11.7 to +16.9‰ compared to Lower Roan Dolomites, which show δ 18O of +22.4 to +23.0‰. Two distinct structural regimes are recognized in the Nchanga area: a weakly deformed zone consisting of basement and overlying footwall siliciclastics, and a moderate to tightly folded zone of meta-sediments of the Katangan succession. The fold geometry of the Lower Roan package is controlled by internal thrust fault-propagation folds, which detach at the top of the lowermost arkose or within the base of the overlying stratigraphy and show vergence towards the NE. Faulting and folding are considered to be synchronous, as folding predominantly occurred at the tips of propagating thrust faults, with local thrust breakthrough. The data from Nchanga suggests a strong link between ore formation and the development of structures during basin inversion as part of the Lufilian Orogeny. Sulfides tend to be concentrated within arenites or coarser-grained layers within shale units, suggesting that host-rock porosity and possibly permeability played a role in ore formation. However, sulfides are also commonly orientated along, but not deformed by, a tectonic fabric or hosted within small fractures that suggest a significant role for deformation in the development of the mineralization. The ore mineralogy, hydrothermal alteration, and stable isotope data lend support to models consistent with the thermochemical reduction of a sulfate- (and metal) enriched hydrothermal fluid, at the site of mineralization. There is no evidence at Nchanga for a contribution of bacteriogenic sulfide, produced during sedimentation or early diagenesis, to the ores.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Editorial handling: H. Frimmel  相似文献   
104.
CO2 inclusions with density up to 1,197 kg m−3 occur in quartz–stibnite veins hosted in the low-grade Palaeozoic basement of the Gemericum tectonic unit in the Western Carpathians. Raman microanalysis corroborated CO2 as dominant gas species accompanied by small amounts of nitrogen (<7.3 mol%) and methane (<2.5 mol%). The superdense CO2 phase exsolved from an aqueous bulk fluid at temperatures of 183–237°C and pressures between 1.6 and 3.5 kbar, possibly up to 4.5 kbar. Low thermal gradients (∼12–13°C km−1) and the CO2–CH4–N2 fluid composition rule out a genetic link with the subjacent Permian granites and indicate an external, either metamorphogenic (oxidation of siderite, dedolomitization) or lower crustal/mantle, source of the ore-forming fluids.According to microprobe U–Pb–Th dating of monazite, the stibnite-bearing veins formed during early Cretaceous thrusting of the Gemeric basement over the adjacent Veporic unit. The 15- to 18-km depth of burial estimated from the fluid inclusion trapping PT parameters indicates a 8- to 11-km-thick Upper Palaeozoic–Jurassic accretionary complex overlying the Gemeric basement and its Permo-Triassic autochthonous cover.  相似文献   
105.
106.
The Global Positioning System (GPS) radio occultation measurements obtained using the TurboRogue GPS receiver on the Danish satellite Ørsted have been processed using the single frequency method. Atmospheric profiles of refractivity and temperature are derived and validated against numerical weather prediction data from the European Centre for Medium-Range Weather Forecast (ECMWF). Results from the Ørsted GPS measurement campaign in February 2000 indicate that the single frequency method can provide retrievals with accuracy comparable to that of using two frequencies. From comparisons between measured dry temperature profiles and corresponding dry temperature profiles derived from ECMWF analysis fields, we find a mean difference of less than 0.5 K and a standard deviation of 2–4 K between 500 and 30 hPa in height. Above 30 hPa the impact of the ionosphere becomes more dominant and more difficult to eliminate using the single frequency method, and the results show degraded accuracy when compared to previous analysis results of occultation data from other missions using the dual frequency method. At latitudes less than 40° (denoted low latitudes), the standard deviation is generally smaller than at latitudes higher than 40° (denoted high latitudes). A small temperature bias is observed centered at 200 hPa for low latitudes and at 300 hPa for high latitudes. This indicates that the ECMWF analyses do not adequately resolve the tropopause temperature minimum. In the lowest part of the troposphere an observed warm bias is thought to be due to erroneous tracking of the GPS signal in cases of atmospheric multipath propagation.  相似文献   
107.
108.
Lithium is an important geochemical tracer for fluids or solids. However, because the electron microprobe cannot detect Li, variations of Li abundance at the micrometric scale are most often estimated from bulk analyses. In this study, the Li intense emission line at 670.706 nm in optical emission spectroscopy was used to perfect the analysis of Li at the micrometric scale by means of laser-induced breakdown spectroscopy (LIBS). To estimate lithium content for different geological materials, LIBS calibration of the emission line at 670.706 nm was achieved by use of synthetic glasses and natural minerals. The detection limit for this method is ∼5 ppm Li. Three applications to geological materials show the potential of LIBS for lithium determination, namely for Li-bearing minerals, melt inclusions, quartz, and associated fluid inclusions.For spodumene and petalite from granite pegmatite dikes (Portugal), the Li2O concentrations are 7.6 ± 1.6 wt% and 6.3 ± 1.3 wt%, respectively, by use of LIBS. These values agree with ion microprobe analyses, bulk analyses, or both. For eucryptite crystals, the Li concentrations are scattered because grain size is smaller than the LIBS spatial resolution (6 to 8 μm). Lithium concentrations of melt inclusions from the Streltsovka U deposit (Siberia) are in the range of 2 to 6.2 wt% (Li2O) for Li-rich daughter minerals. Lithium estimations on silicate glasses display values between 90 and 400 ppm.Lithium was also analyzed as a trace element in quartz. Transverse profiles were performed in hydrothermal barren quartz veins from the Spanish Central System (Sierra de Guadarrama). The highest Li concentrations (250 to 370 ppm) were found in specific growth bands in conjunction with the observed variation in optical cathodoluminescence intensity. Considering the fluid inclusion analysis, the source of fluid responsible to the Li enrichment in quartz is probably high-salinity fluids derived from sedimentary basins.  相似文献   
109.
110.
Uncertainties in quantitative time-lapse seismic analysis   总被引:1,自引:0,他引:1  
Most seismic time-lapse studies so far have been of a qualitative nature. Identification of areas with minor or no seismic changes has been used to plan new infill drilling targets. Increased accuracy in seismic acquisition methods, in both conventional streamer surveys and newer methods such as multicomponent sea-bed seismic and permanent sensors, opens possibilities for the next step: quantitative time-lapse analysis. Quantitative methods here mean the estimation of, for instance, a change in fluid saturation from 20% water to 90% water or the estimation of a pore pressure change of 5 MPa. Explicit expressions for the uncertainties associated with estimated changes in, for instance, reservoir pressure and fluid saturation are derived. These formulae can be used to compare relative uncertainties between estimated parameters as well as to identify the critical factors in various estimation techniques. The importance of accurate rock physics input, as well as that of highly repeatable time-lapse seismic data, is emphasized. Furthermore, uncertainty analysis can be used to find optimal weight factors when the same parameter (e.g. saturation change) is estimated by two or three different techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号